基于递归神经网络和聚类技术的患者心电分类

Chenshuang Zhang, Guijin Wang, Jingwei Zhao, Pengfei Gao, Jianping Lin, Huazhong Yang
{"title":"基于递归神经网络和聚类技术的患者心电分类","authors":"Chenshuang Zhang, Guijin Wang, Jingwei Zhao, Pengfei Gao, Jianping Lin, Huazhong Yang","doi":"10.2316/P.2017.852-029","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel patient-specific electrocardiogram (ECG) classification algorithm based on the recurrent neural networks (RNN) and density based clustering technique. We use RNN to learn time correlation among ECG signal points and to classify ECG beats with different heart rates. Morphology information including the present beat and the T wave of former beat is fed into RNN to learn underlying features automatically. Clustering method is employed to find representative beats as the training data. Evaluated on the MIT-BIH Arrhythmia Database, the experimental results show that proposed algorithm achieves the state-of-the-art classification performance.","PeriodicalId":6635,"journal":{"name":"2017 13th IASTED International Conference on Biomedical Engineering (BioMed)","volume":"361 1","pages":"63-67"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":"{\"title\":\"Patient-specific ECG classification based on recurrent neural networks and clustering technique\",\"authors\":\"Chenshuang Zhang, Guijin Wang, Jingwei Zhao, Pengfei Gao, Jianping Lin, Huazhong Yang\",\"doi\":\"10.2316/P.2017.852-029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel patient-specific electrocardiogram (ECG) classification algorithm based on the recurrent neural networks (RNN) and density based clustering technique. We use RNN to learn time correlation among ECG signal points and to classify ECG beats with different heart rates. Morphology information including the present beat and the T wave of former beat is fed into RNN to learn underlying features automatically. Clustering method is employed to find representative beats as the training data. Evaluated on the MIT-BIH Arrhythmia Database, the experimental results show that proposed algorithm achieves the state-of-the-art classification performance.\",\"PeriodicalId\":6635,\"journal\":{\"name\":\"2017 13th IASTED International Conference on Biomedical Engineering (BioMed)\",\"volume\":\"361 1\",\"pages\":\"63-67\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th IASTED International Conference on Biomedical Engineering (BioMed)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2316/P.2017.852-029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IASTED International Conference on Biomedical Engineering (BioMed)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2316/P.2017.852-029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78

摘要

本文提出了一种基于递归神经网络(RNN)和密度聚类技术的患者特异性心电图(ECG)分类算法。利用RNN学习心电信号点之间的时间相关性,对不同心率下的心电跳动进行分类。将当前拍和前拍的T波等形态学信息输入到RNN中,自动学习底层特征。采用聚类方法寻找具有代表性的节拍作为训练数据。在MIT-BIH心律失常数据库上进行的实验结果表明,该算法达到了最先进的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Patient-specific ECG classification based on recurrent neural networks and clustering technique
In this paper, we propose a novel patient-specific electrocardiogram (ECG) classification algorithm based on the recurrent neural networks (RNN) and density based clustering technique. We use RNN to learn time correlation among ECG signal points and to classify ECG beats with different heart rates. Morphology information including the present beat and the T wave of former beat is fed into RNN to learn underlying features automatically. Clustering method is employed to find representative beats as the training data. Evaluated on the MIT-BIH Arrhythmia Database, the experimental results show that proposed algorithm achieves the state-of-the-art classification performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A physical simulation to investigate the effect of anorectal angle on continence Effect of anatomical landmark placement variation on the angular parameters of the lower extremities Balancing strategy differences in bilateral knee osteoarthritis patients Controlled permeation of lidocaine hydrochloride using a smart drug delivery system Comparison of single ended and differential signalling for wired biomedical implants using SPI communication with Reed Solomon Error Correction codes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1