{"title":"海胆胚胎中局部细胞相互作用与原肠胚形成的控制","authors":"Jeff Hardin","doi":"10.1006/sedb.1994.1011","DOIUrl":null,"url":null,"abstract":"<div><p>The sea urchin embryo is a good model system for studying the role of mechanical and cell-cell interactions during epithelial invagination, cell rearrangement and mesenchymal patterning in the gastrula. The mechanisms underlying the initial invagination of the archenteron have been surprisingly elusive; several possible mechanisms are discussed. In contrast to its initial invagination, the cellular basis for the elongation of the archenteron is better understood: both autonomous epithelial cell rearrangement and further rearrangement driven by secondary mesenchyme cells appear to be involved. Experiments indicate that patterning of freely migrating primary mesenchyme cells and secondary mesenchyme cells residing in the tip of the archenteron relies to a large extent on information resident in the ectoderm. Interactions between cells in the early embryo and later cell-cell interactions are both required for the establishment of ectodermal pattern information. Surprisingly, in the case of the oral ectoderm the fixation of pattern information does not occur until immediately prior to gastrulation.</p></div>","PeriodicalId":101155,"journal":{"name":"Seminars in Developmental Biology","volume":"5 2","pages":"Pages 77-84"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/sedb.1994.1011","citationCount":"9","resultStr":"{\"title\":\"Local cell interactions and the control of gastrulation in the sea urchin embryo\",\"authors\":\"Jeff Hardin\",\"doi\":\"10.1006/sedb.1994.1011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The sea urchin embryo is a good model system for studying the role of mechanical and cell-cell interactions during epithelial invagination, cell rearrangement and mesenchymal patterning in the gastrula. The mechanisms underlying the initial invagination of the archenteron have been surprisingly elusive; several possible mechanisms are discussed. In contrast to its initial invagination, the cellular basis for the elongation of the archenteron is better understood: both autonomous epithelial cell rearrangement and further rearrangement driven by secondary mesenchyme cells appear to be involved. Experiments indicate that patterning of freely migrating primary mesenchyme cells and secondary mesenchyme cells residing in the tip of the archenteron relies to a large extent on information resident in the ectoderm. Interactions between cells in the early embryo and later cell-cell interactions are both required for the establishment of ectodermal pattern information. Surprisingly, in the case of the oral ectoderm the fixation of pattern information does not occur until immediately prior to gastrulation.</p></div>\",\"PeriodicalId\":101155,\"journal\":{\"name\":\"Seminars in Developmental Biology\",\"volume\":\"5 2\",\"pages\":\"Pages 77-84\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1006/sedb.1994.1011\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in Developmental Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044578184710115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044578184710115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Local cell interactions and the control of gastrulation in the sea urchin embryo
The sea urchin embryo is a good model system for studying the role of mechanical and cell-cell interactions during epithelial invagination, cell rearrangement and mesenchymal patterning in the gastrula. The mechanisms underlying the initial invagination of the archenteron have been surprisingly elusive; several possible mechanisms are discussed. In contrast to its initial invagination, the cellular basis for the elongation of the archenteron is better understood: both autonomous epithelial cell rearrangement and further rearrangement driven by secondary mesenchyme cells appear to be involved. Experiments indicate that patterning of freely migrating primary mesenchyme cells and secondary mesenchyme cells residing in the tip of the archenteron relies to a large extent on information resident in the ectoderm. Interactions between cells in the early embryo and later cell-cell interactions are both required for the establishment of ectodermal pattern information. Surprisingly, in the case of the oral ectoderm the fixation of pattern information does not occur until immediately prior to gastrulation.