地面车辆单目视觉里程计

M. Sabry, Abdulla Al-Kaff, A. Hussein, Slim Abdennadher
{"title":"地面车辆单目视觉里程计","authors":"M. Sabry, Abdulla Al-Kaff, A. Hussein, Slim Abdennadher","doi":"10.1109/ITSC.2019.8917391","DOIUrl":null,"url":null,"abstract":"Technology advances in the field of Intelligent Transportation Systems are rapidly increasing to obtain higher autonomy levels, and improve the robustness and reliability of autonomous driving. One of the challenges related to autonomous vehicles is the localization systems especially in GPS-denied environments. This paper presents an enhancement in the monocular visual odometry by exploring the use of one external sensor (encoder); in order to obtain the vehicle speed with computer vision techniques to provide a reliable and real time localization system. The proposed algorithm has been validated by performing real experiments, and the obtained results show the improvement in accuracy comparing to existing stereo visual odometry algorithm, with lower error in translation and rotation of the path points.","PeriodicalId":6717,"journal":{"name":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","volume":"55 1","pages":"3587-3592"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Ground Vehicle Monocular Visual Odometry\",\"authors\":\"M. Sabry, Abdulla Al-Kaff, A. Hussein, Slim Abdennadher\",\"doi\":\"10.1109/ITSC.2019.8917391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Technology advances in the field of Intelligent Transportation Systems are rapidly increasing to obtain higher autonomy levels, and improve the robustness and reliability of autonomous driving. One of the challenges related to autonomous vehicles is the localization systems especially in GPS-denied environments. This paper presents an enhancement in the monocular visual odometry by exploring the use of one external sensor (encoder); in order to obtain the vehicle speed with computer vision techniques to provide a reliable and real time localization system. The proposed algorithm has been validated by performing real experiments, and the obtained results show the improvement in accuracy comparing to existing stereo visual odometry algorithm, with lower error in translation and rotation of the path points.\",\"PeriodicalId\":6717,\"journal\":{\"name\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"volume\":\"55 1\",\"pages\":\"3587-3592\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2019.8917391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2019.8917391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

为了获得更高的自主水平,提高自动驾驶的鲁棒性和可靠性,智能交通系统领域的技术进步正在迅速增加。与自动驾驶汽车相关的挑战之一是定位系统,特别是在没有gps的环境中。本文通过探索使用一个外部传感器(编码器)来增强单目视觉里程计;利用计算机视觉技术获取车辆的行驶速度,提供可靠、实时的定位系统。通过实际实验验证了该算法的有效性,与现有的立体视觉测距算法相比,该算法的精度得到了提高,路径点的平移和旋转误差更小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ground Vehicle Monocular Visual Odometry
Technology advances in the field of Intelligent Transportation Systems are rapidly increasing to obtain higher autonomy levels, and improve the robustness and reliability of autonomous driving. One of the challenges related to autonomous vehicles is the localization systems especially in GPS-denied environments. This paper presents an enhancement in the monocular visual odometry by exploring the use of one external sensor (encoder); in order to obtain the vehicle speed with computer vision techniques to provide a reliable and real time localization system. The proposed algorithm has been validated by performing real experiments, and the obtained results show the improvement in accuracy comparing to existing stereo visual odometry algorithm, with lower error in translation and rotation of the path points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reliable Monocular Ego-Motion Estimation System in Rainy Urban Environments Coarse-to-Fine Luminance Estimation for Low-Light Image Enhancement in Maritime Video Surveillance Vehicle Occupancy Detection for HOV/HOT Lanes Enforcement Road Roughness Crowd-Sensing with Smartphone Apps LACI: Low-effort Automatic Calibration of Infrastructure Sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1