S. Bowden, Y. Kobayashi, Ogheneworo E. Offeh, M. Tsang, Yuzuru Yamamoto
{"title":"热液蚀变火山碎屑沉积物程序升温热解过程中Tmax测量的潜在分析干扰","authors":"S. Bowden, Y. Kobayashi, Ogheneworo E. Offeh, M. Tsang, Yuzuru Yamamoto","doi":"10.1017/exp.2023.3","DOIUrl":null,"url":null,"abstract":"Abstract The temperature of maximum pyrolysis yield (known as Tmax) can be used to determine the level of thermal alteration in sedimentary organic matter; higher Tmax values represent higher thermal alteration. Tmax is commonly measured on petroleum source rocks or similar sediments with high organic carbon contents. It would be desirable to measure the Tmax of volcanic sediments because they can have complex patterns of thermal alteration. However, volcanic sediments often have low total organic carbon contents and consequently are susceptible to analytical interferences. Despite this, it can be shown that meaningful Tmax measurements can still be made in sediment with organic carbon contents as low as 0.2% and that interference caused by bitumen or ionizable salts can be mitigated by solvent extraction and rinsing with water. Thus, it is reasonable to use temperature programmed pyrolysis to assess levels of thermal alteration in even low total organic carbon volcanoclastic sediments.","PeriodicalId":12269,"journal":{"name":"Experimental Results","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential analytical interferences when measuring Tmax during temperature programmed pyrolysis of hydrothermally altered volcanoclastic sediment\",\"authors\":\"S. Bowden, Y. Kobayashi, Ogheneworo E. Offeh, M. Tsang, Yuzuru Yamamoto\",\"doi\":\"10.1017/exp.2023.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The temperature of maximum pyrolysis yield (known as Tmax) can be used to determine the level of thermal alteration in sedimentary organic matter; higher Tmax values represent higher thermal alteration. Tmax is commonly measured on petroleum source rocks or similar sediments with high organic carbon contents. It would be desirable to measure the Tmax of volcanic sediments because they can have complex patterns of thermal alteration. However, volcanic sediments often have low total organic carbon contents and consequently are susceptible to analytical interferences. Despite this, it can be shown that meaningful Tmax measurements can still be made in sediment with organic carbon contents as low as 0.2% and that interference caused by bitumen or ionizable salts can be mitigated by solvent extraction and rinsing with water. Thus, it is reasonable to use temperature programmed pyrolysis to assess levels of thermal alteration in even low total organic carbon volcanoclastic sediments.\",\"PeriodicalId\":12269,\"journal\":{\"name\":\"Experimental Results\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Results\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/exp.2023.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Results","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/exp.2023.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Potential analytical interferences when measuring Tmax during temperature programmed pyrolysis of hydrothermally altered volcanoclastic sediment
Abstract The temperature of maximum pyrolysis yield (known as Tmax) can be used to determine the level of thermal alteration in sedimentary organic matter; higher Tmax values represent higher thermal alteration. Tmax is commonly measured on petroleum source rocks or similar sediments with high organic carbon contents. It would be desirable to measure the Tmax of volcanic sediments because they can have complex patterns of thermal alteration. However, volcanic sediments often have low total organic carbon contents and consequently are susceptible to analytical interferences. Despite this, it can be shown that meaningful Tmax measurements can still be made in sediment with organic carbon contents as low as 0.2% and that interference caused by bitumen or ionizable salts can be mitigated by solvent extraction and rinsing with water. Thus, it is reasonable to use temperature programmed pyrolysis to assess levels of thermal alteration in even low total organic carbon volcanoclastic sediments.