Chao Ma, Long Chen, Lei Liu, Qing Li, Hongjie Yang
{"title":"空间精密载荷微振动试验超静音重力卸载的研制","authors":"Chao Ma, Long Chen, Lei Liu, Qing Li, Hongjie Yang","doi":"10.1109/ICIEA51954.2021.9516206","DOIUrl":null,"url":null,"abstract":"To ensure the performance and reliability of ultra-quiet payloads in orbit, the ground test are usually carried out before launch. However, the gravity unloading system with suspension introduces redundant disturbances into ultra-quiet payloads. The gravity unloading system may affect the vibration isolation performance of the ultra-quiet payloads. To solve the problem of introducing disturbances, a gravity unloading system with high stiffness shelf and ultra-low frequency spring is designed in this paper. Testing results show that the gravity unloading system reduce the redundant disturbances to less than $2\\mu\\mathrm{g}$ within the frequency range of 0.6-100Hz, which can simultaneously guarantee the gravity unloading function and ultra-quiet environment.","PeriodicalId":6809,"journal":{"name":"2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA)","volume":"4 1","pages":"1763-1768"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Development of Ultra-quiet Gravity Unloading for Micro-vibration Testing of Space Precision Payloads\",\"authors\":\"Chao Ma, Long Chen, Lei Liu, Qing Li, Hongjie Yang\",\"doi\":\"10.1109/ICIEA51954.2021.9516206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To ensure the performance and reliability of ultra-quiet payloads in orbit, the ground test are usually carried out before launch. However, the gravity unloading system with suspension introduces redundant disturbances into ultra-quiet payloads. The gravity unloading system may affect the vibration isolation performance of the ultra-quiet payloads. To solve the problem of introducing disturbances, a gravity unloading system with high stiffness shelf and ultra-low frequency spring is designed in this paper. Testing results show that the gravity unloading system reduce the redundant disturbances to less than $2\\\\mu\\\\mathrm{g}$ within the frequency range of 0.6-100Hz, which can simultaneously guarantee the gravity unloading function and ultra-quiet environment.\",\"PeriodicalId\":6809,\"journal\":{\"name\":\"2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA)\",\"volume\":\"4 1\",\"pages\":\"1763-1768\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA51954.2021.9516206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA51954.2021.9516206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of Ultra-quiet Gravity Unloading for Micro-vibration Testing of Space Precision Payloads
To ensure the performance and reliability of ultra-quiet payloads in orbit, the ground test are usually carried out before launch. However, the gravity unloading system with suspension introduces redundant disturbances into ultra-quiet payloads. The gravity unloading system may affect the vibration isolation performance of the ultra-quiet payloads. To solve the problem of introducing disturbances, a gravity unloading system with high stiffness shelf and ultra-low frequency spring is designed in this paper. Testing results show that the gravity unloading system reduce the redundant disturbances to less than $2\mu\mathrm{g}$ within the frequency range of 0.6-100Hz, which can simultaneously guarantee the gravity unloading function and ultra-quiet environment.