实时内镜荧光成像用于胃肠道早期癌症的检测

Haishan Zeng, Alan Weiss, Richard Cline, Calum E MacAulay
{"title":"实时内镜荧光成像用于胃肠道早期癌症的检测","authors":"Haishan Zeng,&nbsp;Alan Weiss,&nbsp;Richard Cline,&nbsp;Calum E MacAulay","doi":"10.1002/1361-6374(199812)6:4<151::AID-BIO1>3.0.CO;2-G","DOIUrl":null,"url":null,"abstract":"<p>The utility of autofluorescence imaging for early lung cancer detection has been previously demonstrated. The aim of this work is to extend the use of real-time autofluorescence imaging to the early cancer detection in the esophagus, stomach, and colon. A prototype fluorescence imaging system for the gastrointestinal (GI) tract was developed which produces real-time video images of tissue autofluorescence. It consists of a filtered mercury arc lamp light source, two intensified charge coupled device (ICCD) cameras, a fiber optic endoscope, and a computer-based control console. The system is capable of working with three different imaging modalities: (1) conventional white light imaging mode; (2) light induced fluorescence (LIF) imaging mode based on the fluorescence imaging of two wavelength bands (green and red); and (3) light induced fluorescence and reflectance (LIFR) imaging mode based on the combination of a green band fluorescence image and a red–near-IR reflectance image. The imaging wavelength bands were selected based on <i>in vivo</i> fluorescence spectroscopic studies. The fluorescence images (both LIF image and LIFR image) clearly delineate the abnormal tissue areas for biopsy. Early cancer sites are better visualized under fluorescence imaging than under conventional white light examination. Initial clinical tests demonstrated the usefulness of the imaging prototype system for early cancer detection in the GI tract.</p>","PeriodicalId":100176,"journal":{"name":"Bioimaging","volume":"6 4","pages":"151-165"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/1361-6374(199812)6:4<151::AID-BIO1>3.0.CO;2-G","citationCount":"75","resultStr":"{\"title\":\"Real-time endoscopic fluorescence imaging for early cancer detection in the gastrointestinal tract\",\"authors\":\"Haishan Zeng,&nbsp;Alan Weiss,&nbsp;Richard Cline,&nbsp;Calum E MacAulay\",\"doi\":\"10.1002/1361-6374(199812)6:4<151::AID-BIO1>3.0.CO;2-G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The utility of autofluorescence imaging for early lung cancer detection has been previously demonstrated. The aim of this work is to extend the use of real-time autofluorescence imaging to the early cancer detection in the esophagus, stomach, and colon. A prototype fluorescence imaging system for the gastrointestinal (GI) tract was developed which produces real-time video images of tissue autofluorescence. It consists of a filtered mercury arc lamp light source, two intensified charge coupled device (ICCD) cameras, a fiber optic endoscope, and a computer-based control console. The system is capable of working with three different imaging modalities: (1) conventional white light imaging mode; (2) light induced fluorescence (LIF) imaging mode based on the fluorescence imaging of two wavelength bands (green and red); and (3) light induced fluorescence and reflectance (LIFR) imaging mode based on the combination of a green band fluorescence image and a red–near-IR reflectance image. The imaging wavelength bands were selected based on <i>in vivo</i> fluorescence spectroscopic studies. The fluorescence images (both LIF image and LIFR image) clearly delineate the abnormal tissue areas for biopsy. Early cancer sites are better visualized under fluorescence imaging than under conventional white light examination. Initial clinical tests demonstrated the usefulness of the imaging prototype system for early cancer detection in the GI tract.</p>\",\"PeriodicalId\":100176,\"journal\":{\"name\":\"Bioimaging\",\"volume\":\"6 4\",\"pages\":\"151-165\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/1361-6374(199812)6:4<151::AID-BIO1>3.0.CO;2-G\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/1361-6374%28199812%296%3A4%3C151%3A%3AAID-BIO1%3E3.0.CO%3B2-G\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioimaging","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/1361-6374%28199812%296%3A4%3C151%3A%3AAID-BIO1%3E3.0.CO%3B2-G","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

摘要

自体荧光成像在早期肺癌检测中的应用已经得到证实。这项工作的目的是将实时自身荧光成像的使用扩展到食道、胃和结肠的早期癌症检测。研制了一种用于胃肠道的荧光成像系统原型,该系统可产生组织自身荧光的实时视频图像。它由一个滤光汞弧灯光源、两个强化电荷耦合器件(ICCD)相机、一个光纤内窥镜和一个基于计算机的控制台组成。该系统能够在三种不同的成像模式下工作:(1)传统白光成像模式;(2)基于绿、红两波段荧光成像的光诱导荧光(LIF)成像模式;(3)基于绿色波段荧光图像与红色近红外反射图像相结合的光诱导荧光与反射(LIFR)成像模式。根据体内荧光光谱研究选择成像波长波段。荧光图像(包括LIF图像和LIFR图像)清楚地描绘了活检的异常组织区域。荧光成像比常规白光检查能更好地显示早期肿瘤部位。初步临床试验证明了该成像原型系统在胃肠道早期癌症检测中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-time endoscopic fluorescence imaging for early cancer detection in the gastrointestinal tract

The utility of autofluorescence imaging for early lung cancer detection has been previously demonstrated. The aim of this work is to extend the use of real-time autofluorescence imaging to the early cancer detection in the esophagus, stomach, and colon. A prototype fluorescence imaging system for the gastrointestinal (GI) tract was developed which produces real-time video images of tissue autofluorescence. It consists of a filtered mercury arc lamp light source, two intensified charge coupled device (ICCD) cameras, a fiber optic endoscope, and a computer-based control console. The system is capable of working with three different imaging modalities: (1) conventional white light imaging mode; (2) light induced fluorescence (LIF) imaging mode based on the fluorescence imaging of two wavelength bands (green and red); and (3) light induced fluorescence and reflectance (LIFR) imaging mode based on the combination of a green band fluorescence image and a red–near-IR reflectance image. The imaging wavelength bands were selected based on in vivo fluorescence spectroscopic studies. The fluorescence images (both LIF image and LIFR image) clearly delineate the abnormal tissue areas for biopsy. Early cancer sites are better visualized under fluorescence imaging than under conventional white light examination. Initial clinical tests demonstrated the usefulness of the imaging prototype system for early cancer detection in the GI tract.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Magnetic Particle Imaging Magnetic Resonance Imaging Quantitative evaluation of light microscopes based on image processing techniques Confocal microscopy of single molecules of the green fluorescent protein Heavy metal contrast enhancement for the selective detection of gold particles in electron microscopical sections using electron spectroscopic imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1