{"title":"基于度量标记的概率度量嵌入","authors":"Kamesh Munagala, Govind S. Sankar, Erin Taylor","doi":"10.4230/LIPIcs.APPROX/RANDOM.2023.2","DOIUrl":null,"url":null,"abstract":"We consider probabilistic embedding of metric spaces into ultra-metrics (or equivalently to a constant factor, into hierarchically separated trees) to minimize the expected distortion of any pairwise distance. Such embeddings have been widely used in network design and online algorithms. Our main result is a polynomial time algorithm that approximates the optimal distortion on any instance to within a constant factor. We achieve this via a novel LP formulation that reduces this problem to a probabilistic version of uniform metric labeling.","PeriodicalId":54319,"journal":{"name":"Spin","volume":"27 1","pages":"2:1-2:10"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic Metric Embedding via Metric Labeling\",\"authors\":\"Kamesh Munagala, Govind S. Sankar, Erin Taylor\",\"doi\":\"10.4230/LIPIcs.APPROX/RANDOM.2023.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider probabilistic embedding of metric spaces into ultra-metrics (or equivalently to a constant factor, into hierarchically separated trees) to minimize the expected distortion of any pairwise distance. Such embeddings have been widely used in network design and online algorithms. Our main result is a polynomial time algorithm that approximates the optimal distortion on any instance to within a constant factor. We achieve this via a novel LP formulation that reduces this problem to a probabilistic version of uniform metric labeling.\",\"PeriodicalId\":54319,\"journal\":{\"name\":\"Spin\",\"volume\":\"27 1\",\"pages\":\"2:1-2:10\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spin\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.2\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spin","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Probabilistic Metric Embedding via Metric Labeling
We consider probabilistic embedding of metric spaces into ultra-metrics (or equivalently to a constant factor, into hierarchically separated trees) to minimize the expected distortion of any pairwise distance. Such embeddings have been widely used in network design and online algorithms. Our main result is a polynomial time algorithm that approximates the optimal distortion on any instance to within a constant factor. We achieve this via a novel LP formulation that reduces this problem to a probabilistic version of uniform metric labeling.
SpinMaterials Science-Electronic, Optical and Magnetic Materials
CiteScore
2.10
自引率
11.10%
发文量
34
期刊介绍:
Spin electronics encompasses a multidisciplinary research effort involving magnetism, semiconductor electronics, materials science, chemistry and biology. SPIN aims to provide a forum for the presentation of research and review articles of interest to all researchers in the field.
The scope of the journal includes (but is not necessarily limited to) the following topics:
*Materials:
-Metals
-Heusler compounds
-Complex oxides: antiferromagnetic, ferromagnetic
-Dilute magnetic semiconductors
-Dilute magnetic oxides
-High performance and emerging magnetic materials
*Semiconductor electronics
*Nanodevices:
-Fabrication
-Characterization
*Spin injection
*Spin transport
*Spin transfer torque
*Spin torque oscillators
*Electrical control of magnetic properties
*Organic spintronics
*Optical phenomena and optoelectronic spin manipulation
*Applications and devices:
-Novel memories and logic devices
-Lab-on-a-chip
-Others
*Fundamental and interdisciplinary studies:
-Spin in low dimensional system
-Spin in medical sciences
-Spin in other fields
-Computational materials discovery