首页 > 最新文献

Spin最新文献

英文 中文
Interfacial Magnetic Anisotropy Controlled Spin Pumping in Co60Fe20B20/Pt Stack Co60Fe20B20/Pt 叠层中受界面磁各向异性控制的自旋泵送
IF 1.8 4区 物理与天体物理 Q4 PHYSICS, APPLIED Pub Date : 2024-03-30 DOI: 10.1142/s2010324724400010
Mahammad Tahir, Dhananjay Tiwari, Abhishek Juyal, Rohit Medwal, Soumik Mukhopadhyay

Controlled spin transport in magnetic stacks is required to realize pure spin current-driven logic and memory devices. The control over the generation and detection of the pure spin current is achieved by tuning the spin to charge conversion efficiency of the heavy metal interfacing with ferromagnets. Here, we demonstrate the direct tunability of spin angular momentum transfer and thereby spin pumping, in CoFeB/Pt stack, with interfacial magnetic anisotropy. The ultra-low thickness of the CoFeB thin film by tilting the magnetization from in-plane to out-of plane direction due to interfacial anisotropy from higher thickness of CoFeB thin film. The ferromagnetic resonance measurements are performed to investigate the magnetic anisotropy and spin pumping in CoFeB/Pt stacks. We clearly observe tunable spin pumping effect in the CoFeB/Pt stacks with varying CoFeB thicknesses. The spin current density, with varying ferromagnetic layer thickness, is found to increase from 1.10MA/m2 to 2.40MA/m2, with increasing in-plane anisotropy field. Such interfacial anisotropy-controlled generation of pure spin current can potentially lead to next-generation anisotropic spin current-controlled spintronic devices.

要实现纯自旋电流驱动的逻辑和存储设备,就必须控制磁堆中的自旋传输。纯自旋电流的产生和检测控制是通过调整重金属与铁磁体界面的自旋电荷转换效率来实现的。在这里,我们展示了 CoFeB/Pt 叠层中自旋角动量传递的直接可调性,以及自旋泵浦与界面磁各向异性的关系。超低厚度的 CoFeB 薄膜会因界面各向异性而将磁化从平面内倾斜到平面外。为了研究 CoFeB/Pt 叠层中的磁各向异性和自旋泵,我们进行了铁磁共振测量。我们在 CoFeB 厚度不同的 CoFeB/Pt 叠层中清楚地观察到了可调的自旋泵效应。随着面内各向异性场的增加,铁磁层厚度不同的自旋电流密度从 1.10MA/m2 增加到 2.40MA/m2。这种由界面各向异性控制的纯自旋电流的产生有可能导致下一代各向异性自旋电流控制的自旋电子器件。
{"title":"Interfacial Magnetic Anisotropy Controlled Spin Pumping in Co60Fe20B20/Pt Stack","authors":"Mahammad Tahir, Dhananjay Tiwari, Abhishek Juyal, Rohit Medwal, Soumik Mukhopadhyay","doi":"10.1142/s2010324724400010","DOIUrl":"https://doi.org/10.1142/s2010324724400010","url":null,"abstract":"<p>Controlled spin transport in magnetic stacks is required to realize pure spin current-driven logic and memory devices. The control over the generation and detection of the pure spin current is achieved by tuning the spin to charge conversion efficiency of the heavy metal interfacing with ferromagnets. Here, we demonstrate the direct tunability of spin angular momentum transfer and thereby spin pumping, in CoFeB/Pt stack, with interfacial magnetic anisotropy. The ultra-low thickness of the CoFeB thin film by tilting the magnetization from in-plane to out-of plane direction due to interfacial anisotropy from higher thickness of CoFeB thin film. The ferromagnetic resonance measurements are performed to investigate the magnetic anisotropy and spin pumping in CoFeB/Pt stacks. We clearly observe tunable spin pumping effect in the CoFeB/Pt stacks with varying CoFeB thicknesses. The spin current density, with varying ferromagnetic layer thickness, is found to increase from 1.10<span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>MA/m<sup>2</sup> to 2.40<span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>MA/m<sup>2</sup>, with increasing in-plane anisotropy field. Such interfacial anisotropy-controlled generation of pure spin current can potentially lead to next-generation anisotropic spin current-controlled spintronic devices.</p>","PeriodicalId":54319,"journal":{"name":"Spin","volume":"49 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140571671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tunability of Microwave Frequency Using Spin Torque Nano Oscillator by the Generated Oersted Field with Tunable Free Layer 利用自旋扭矩纳米振荡器通过可调谐自由层产生的奥斯特场调谐微波频率
IF 1.8 4区 物理与天体物理 Q4 PHYSICS, APPLIED Pub Date : 2024-03-16 DOI: 10.1142/s2010324724500012
H. Bhoomeeswaran, D. Aravinthan, P. Sabareesan
<p>The current-induced magnetization precession dynamics provoked by the spin transfer torque (STT) in a spin valve device i.e. tri-layer device (commonly spin torque nano oscillator (STNO)) is investigated numerically by solving the governing Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation. In this study, we have devised an STNO device made of EuO-based ferromagnetic alloy in free and fixed magnetic layers. The copper acts as a nonmagnetic spacer. Here, we have introduced the current induced Oesterd field (CIOF), which is generated when a spin-polarized current passes through the STNO device. In the device, we have tuned the free layer angle <span><math altimg="eq-00001.gif" display="inline" overflow="scroll"><mi>θ</mi></math></span><span></span> from <span><math altimg="eq-00002.gif" display="inline" overflow="scroll"><mn>3</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup></math></span><span></span> to <span><math altimg="eq-00003.gif" display="inline" overflow="scroll"><mn>9</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup></math></span><span></span> as an increment of <span><math altimg="eq-00004.gif" display="inline" overflow="scroll"><mn>3</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup></math></span><span></span>. For every individual <span><math altimg="eq-00005.gif" display="inline" overflow="scroll"><mi>θ</mi></math></span><span></span> ranging from <span><math altimg="eq-00006.gif" display="inline" overflow="scroll"><mn>3</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup></math></span><span></span> to <span><math altimg="eq-00007.gif" display="inline" overflow="scroll"><mn>9</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup></math></span><span></span>, the generated Oersted field’s strength can be altered by increasing the STNO device’s diameter. Henceforth, it is apparent that the frequency tunability is achieved in the device for all the values of <span><math altimg="eq-00008.gif" display="inline" overflow="scroll"><mi>θ</mi></math></span><span></span>. The frequency and power of the device depend entirely on the material’s saturation magnetization, which inherently reflects the current density and coherence of spin-polarized DC. From the results, it is apparent that for a particular <span><math altimg="eq-00009.gif" display="inline" overflow="scroll"><mi>θ</mi></math></span><span></span>, the frequency keeps increasing with the eventual decrease in power when we increase the strength of the Oersted field from 10<span><math altimg="eq-00010.gif" display="inline" overflow="scroll"><mspace width=".17em"></mspace></math></span><span></span>kA/m to 50<span><math altimg="eq-00011.gif" display="inline" overflow="scroll"><mspace width=".17em"></mspace></math></span><span></span>kA/m. By doing so, the maximum frequency can be tuned up to 212<span><math altimg="eq-00012.gif" display="inline" overflow="scroll"><mspace width=".17em"></mspace></math></span><span></span>GHz
通过求解支配性 Landau-Lifshitz-Gilbert-Slonczewski (LLGS) 方程,我们对自旋阀器件(即三层器件,通常称为自旋力矩纳米振荡器 (STNO))中由自旋传递力矩 (STT) 引起的电流诱导磁化前驱动力学进行了数值研究。在这项研究中,我们设计了一种由 EuO 基铁磁合金在自由和固定磁层中制成的 STNO 器件。铜作为非磁性间隔物。在这里,我们引入了电流诱导的奥斯特磁场(CIOF),它是自旋极化电流通过 STNO 器件时产生的。在该器件中,我们将自由层角度 θ 从 30∘调至 90∘,增量为 30∘。对于从 30∘ 到 90∘ 的每一个 θ,都可以通过增加 STNO 器件的直径来改变所产生的奥斯特磁场强度。器件的频率和功率完全取决于材料的饱和磁化,而饱和磁化本质上反映了自旋极化直流的电流密度和相干性。从结果可以看出,对于特定的 θ,当我们将奥斯特磁场强度从 10kA/m 增加到 50kA/m 时,频率会不断增加,而功率最终会下降。这样,当θ=90∘,Hoe 为 50kA/m 时,最高频率可调至 212GHz。从科学和技术角度来看,该装置发出的高频是一个关键要素,也是一个发射台元素。它为高容量、高精度、高密度以及传感应用等领域开辟了新的道路。
{"title":"Tunability of Microwave Frequency Using Spin Torque Nano Oscillator by the Generated Oersted Field with Tunable Free Layer","authors":"H. Bhoomeeswaran, D. Aravinthan, P. Sabareesan","doi":"10.1142/s2010324724500012","DOIUrl":"https://doi.org/10.1142/s2010324724500012","url":null,"abstract":"&lt;p&gt;The current-induced magnetization precession dynamics provoked by the spin transfer torque (STT) in a spin valve device i.e. tri-layer device (commonly spin torque nano oscillator (STNO)) is investigated numerically by solving the governing Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation. In this study, we have devised an STNO device made of EuO-based ferromagnetic alloy in free and fixed magnetic layers. The copper acts as a nonmagnetic spacer. Here, we have introduced the current induced Oesterd field (CIOF), which is generated when a spin-polarized current passes through the STNO device. In the device, we have tuned the free layer angle &lt;span&gt;&lt;math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; from &lt;span&gt;&lt;math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∘&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; to &lt;span&gt;&lt;math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mn&gt;9&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∘&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; as an increment of &lt;span&gt;&lt;math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∘&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;. For every individual &lt;span&gt;&lt;math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; ranging from &lt;span&gt;&lt;math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∘&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; to &lt;span&gt;&lt;math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mn&gt;9&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∘&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, the generated Oersted field’s strength can be altered by increasing the STNO device’s diameter. Henceforth, it is apparent that the frequency tunability is achieved in the device for all the values of &lt;span&gt;&lt;math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;. The frequency and power of the device depend entirely on the material’s saturation magnetization, which inherently reflects the current density and coherence of spin-polarized DC. From the results, it is apparent that for a particular &lt;span&gt;&lt;math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, the frequency keeps increasing with the eventual decrease in power when we increase the strength of the Oersted field from 10&lt;span&gt;&lt;math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mspace width=\".17em\"&gt;&lt;/mspace&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;kA/m to 50&lt;span&gt;&lt;math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mspace width=\".17em\"&gt;&lt;/mspace&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;kA/m. By doing so, the maximum frequency can be tuned up to 212&lt;span&gt;&lt;math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mspace width=\".17em\"&gt;&lt;/mspace&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;GHz ","PeriodicalId":54319,"journal":{"name":"Spin","volume":"10 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140201111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monte Carlo Investigation of Dielectric Characteristics in Silicene–Germanene Nanosystem with Junction Connection 具有结点连接的硅-锗纳米系统介电特性的蒙特卡洛研究
IF 1.8 4区 物理与天体物理 Q4 PHYSICS, APPLIED Pub Date : 2024-03-07 DOI: 10.1142/s2010324724500024
Z. Fadil, Rajesh Haldhar, Chaitany Jayprakash Raorane, R. El Fdil, S. Karam, Munirah D. Albaqami, P. Rosaiah, Seong Cheol Kim

In this study, Monte Carlo investigation delves into the dielectric features of silicene–germanene nanosystem with junction connection. We emphasized the profound influence of physical parameters, coupling between Si–Si and Ge–Ge atoms and temperature, on these dielectric features. Our results highlight the pivotal role of the coupling parameter between Ge atoms in influencing blocking temperatures, underlining the significance of high values for spin and coupling parameters for achieving a high blocking temperature and delaying transitions. Furthermore, our analysis of electric hysteresis loops demonstrates their sensitivity to parameter variations, which can offer valuable insights for nanoelectronics and materials science applications.

在这项研究中,蒙特卡洛研究深入探讨了具有结点连接的硅-锗纳米系统的介电特性。我们强调了 Si-Si 和 Ge-Ge 原子间的耦合以及温度等物理参数对这些介电特征的深刻影响。我们的研究结果突出了 Ge 原子间的耦合参数在影响阻塞温度方面的关键作用,强调了高自旋和耦合参数值对于实现高阻塞温度和延迟转变的重要性。此外,我们对电滞环的分析表明了它们对参数变化的敏感性,这为纳米电子学和材料科学应用提供了宝贵的见解。
{"title":"Monte Carlo Investigation of Dielectric Characteristics in Silicene–Germanene Nanosystem with Junction Connection","authors":"Z. Fadil, Rajesh Haldhar, Chaitany Jayprakash Raorane, R. El Fdil, S. Karam, Munirah D. Albaqami, P. Rosaiah, Seong Cheol Kim","doi":"10.1142/s2010324724500024","DOIUrl":"https://doi.org/10.1142/s2010324724500024","url":null,"abstract":"<p>In this study, Monte Carlo investigation delves into the dielectric features of silicene–germanene nanosystem with junction connection. We emphasized the profound influence of physical parameters, coupling between Si–Si and Ge–Ge atoms and temperature, on these dielectric features. Our results highlight the pivotal role of the coupling parameter between Ge atoms in influencing blocking temperatures, underlining the significance of high values for spin and coupling parameters for achieving a high blocking temperature and delaying transitions. Furthermore, our analysis of electric hysteresis loops demonstrates their sensitivity to parameter variations, which can offer valuable insights for nanoelectronics and materials science applications.</p>","PeriodicalId":54319,"journal":{"name":"Spin","volume":"8 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140149344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deposition Pressure Dependence on Spin Hall Angle of W Thin Films Grown on NiFe 沉积压力对在镍铁合金上生长的 W 薄膜自旋霍尔角的影响
IF 1.8 4区 物理与天体物理 Q4 PHYSICS, APPLIED Pub Date : 2024-02-15 DOI: 10.1142/s2010324723400271
K. Sriram, Yaswanth Sai Pappu, M. S. Devapriya, Jhantu Pradhan, Arabinda Haldar, Chandrasekhar Murapaka
<p>Spin-to-charge conversion and vice versa due to spin-orbit coupling in ferromagnet-heavy metal heterostructure is of paramount interest for developing energy-efficient spintronic devices. Here, we have systematically investigated the effect of Ar deposition pressure (<span><math altimg="eq-00001.gif" display="inline" overflow="scroll"><msub><mrow><mi>P</mi></mrow><mrow><mstyle><mtext mathvariant="normal">Ar</mtext></mstyle></mrow></msub><mo stretchy="false">)</mo></math></span><span></span> on the tungsten (<i>W</i>) crystalline phase and extracted spin-dependent transport parameters. X-ray diffraction results show that 10<span><math altimg="eq-00002.gif" display="inline" overflow="scroll"><mspace width=".17em"></mspace></math></span><span></span>nm-thick <i>W</i> films exhibit a structural phase transition from a mixed phase of <span><math altimg="eq-00003.gif" display="inline" overflow="scroll"><mo stretchy="false">(</mo><mi>α</mi><mo>+</mo><mi>β</mi><mo stretchy="false">)</mo></math></span><span></span>-<i>W</i> to a single phase of <span><math altimg="eq-00004.gif" display="inline" overflow="scroll"><mi>β</mi></math></span><span></span>-<i>W</i> as a function of <span><math altimg="eq-00005.gif" display="inline" overflow="scroll"><msub><mrow><mi>P</mi></mrow><mrow><mstyle><mtext mathvariant="normal">Ar</mtext></mstyle></mrow></msub></math></span><span></span>. The observed phase transition is due to a decrease in adatom’s energy and surface mobility. Interestingly, only the <span><math altimg="eq-00006.gif" display="inline" overflow="scroll"><mo stretchy="false">(</mo><mi>α</mi><mo>+</mo><mi>β</mi><mo stretchy="false">)</mo></math></span><span></span>-<i>W</i> phase is found to stabilize when <i>W</i> sputtered on a seed Ni<span><math altimg="eq-00007.gif" display="inline" overflow="scroll"><msub><mrow></mrow><mrow><mn>8</mn><mn>0</mn></mrow></msub></math></span><span></span>Fe<span><math altimg="eq-00008.gif" display="inline" overflow="scroll"><msub><mrow></mrow><mrow><mn>2</mn><mn>0</mn></mrow></msub></math></span><span></span> (Permalloy or Py) film. The growth of <span><math altimg="eq-00009.gif" display="inline" overflow="scroll"><mo stretchy="false">(</mo><mi>α</mi><mo>+</mo><mi>β</mi><mo stretchy="false">)</mo></math></span><span></span>-<i>W</i> on the seed Py layer could be due to the strain that facilitates the mixed phase. <i>W</i> deposited on the Py layer is shown to be dependent on <span><math altimg="eq-00010.gif" display="inline" overflow="scroll"><msub><mrow><mi>P</mi></mrow><mrow><mstyle><mtext mathvariant="normal">Ar</mtext></mstyle></mrow></msub></math></span><span></span>, in which the <span><math altimg="eq-00011.gif" display="inline" overflow="scroll"><mi>β</mi></math></span><span></span>-<i>W</i> relative phase fraction is relative. A ferromagnetic resonance (FMR)-based spin pumping method was employed for spin current injection. The FMR linewidth (<span><math altimg="eq-00012.gif" display="inline" overflow="scroll"
铁磁体-重金属异质结构中的自旋-轨道耦合导致的自旋-电荷转换以及自旋-电荷转换导致的自旋-轨道耦合是开发高能效自旋电子器件的关键所在。在此,我们系统地研究了氩沉积压力(PAr)对钨(W)晶相的影响,并提取了自旋相关输运参数。X 射线衍射结果表明,随着 PAr 的变化,10 纳米厚的 W 薄膜呈现出从 (α+β)-W 混合相到 β-W 单相的结构相变。观察到的相变是由于金刚原子能量和表面迁移率的降低。有趣的是,当 W 溅射到种子 Ni80Fe20(Permalloy 或 Py)薄膜上时,发现只有 (α+β)-W 相稳定下来。(α+β)-W 在种子 Py 层上的生长可能是由于应变促进了混合相的形成。在 Py 层上沉积的 W 取决于 PAr,其中 β-W 的相对相分数是相对的。自旋电流注入采用了基于铁磁共振(FMR)的自旋泵方法。由于自旋电流跨界面传输,Py/W 的 FMR 线宽(ΔH)比裸 Py 层更宽。在 PAr=5mTorr 和 PAr=10mTorr 条件下,提取的 g↑↓ 分别为 4.90×1018m-2 和 4.05×1018m-2。根据反自旋霍尔效应(ISHE)的测量结果,富含α-W 的 (α+β)-W 混合相的有效自旋霍尔角((θSH))估计为-0.17,而富含β-W 的 (α+β)-W 混合相的有效自旋霍尔角((θSH))估计为-0.10。我们的系统研究表明,通过控制 W 的相对相位分数,可以通过低纵向电阻率获得相对较大的有效自旋霍尔角,这有助于开发高能效的自旋电子器件。
{"title":"Deposition Pressure Dependence on Spin Hall Angle of W Thin Films Grown on NiFe","authors":"K. Sriram, Yaswanth Sai Pappu, M. S. Devapriya, Jhantu Pradhan, Arabinda Haldar, Chandrasekhar Murapaka","doi":"10.1142/s2010324723400271","DOIUrl":"https://doi.org/10.1142/s2010324723400271","url":null,"abstract":"&lt;p&gt;Spin-to-charge conversion and vice versa due to spin-orbit coupling in ferromagnet-heavy metal heterostructure is of paramount interest for developing energy-efficient spintronic devices. Here, we have systematically investigated the effect of Ar deposition pressure (&lt;span&gt;&lt;math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;Ar&lt;/mtext&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; on the tungsten (&lt;i&gt;W&lt;/i&gt;) crystalline phase and extracted spin-dependent transport parameters. X-ray diffraction results show that 10&lt;span&gt;&lt;math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mspace width=\".17em\"&gt;&lt;/mspace&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;nm-thick &lt;i&gt;W&lt;/i&gt; films exhibit a structural phase transition from a mixed phase of &lt;span&gt;&lt;math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;-&lt;i&gt;W&lt;/i&gt; to a single phase of &lt;span&gt;&lt;math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;-&lt;i&gt;W&lt;/i&gt; as a function of &lt;span&gt;&lt;math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;Ar&lt;/mtext&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;. The observed phase transition is due to a decrease in adatom’s energy and surface mobility. Interestingly, only the &lt;span&gt;&lt;math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;-&lt;i&gt;W&lt;/i&gt; phase is found to stabilize when &lt;i&gt;W&lt;/i&gt; sputtered on a seed Ni&lt;span&gt;&lt;math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;8&lt;/mn&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;Fe&lt;span&gt;&lt;math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; (Permalloy or Py) film. The growth of &lt;span&gt;&lt;math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;-&lt;i&gt;W&lt;/i&gt; on the seed Py layer could be due to the strain that facilitates the mixed phase. &lt;i&gt;W&lt;/i&gt; deposited on the Py layer is shown to be dependent on &lt;span&gt;&lt;math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;Ar&lt;/mtext&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, in which the &lt;span&gt;&lt;math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;-&lt;i&gt;W&lt;/i&gt; relative phase fraction is relative. A ferromagnetic resonance (FMR)-based spin pumping method was employed for spin current injection. The FMR linewidth (&lt;span&gt;&lt;math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"","PeriodicalId":54319,"journal":{"name":"Spin","volume":"11 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140149346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Micromagnetic Study of the Influences of DMI on Spin-Cherenkov Effect DMI 对自旋-切伦科夫效应影响的微磁研究
IF 1.8 4区 物理与天体物理 Q4 PHYSICS, APPLIED Pub Date : 2023-12-15 DOI: 10.1142/s2010324723500340
Mingming Yang, Ming Yan
{"title":"A Micromagnetic Study of the Influences of DMI on Spin-Cherenkov Effect","authors":"Mingming Yang, Ming Yan","doi":"10.1142/s2010324723500340","DOIUrl":"https://doi.org/10.1142/s2010324723500340","url":null,"abstract":"","PeriodicalId":54319,"journal":{"name":"Spin","volume":"43 31","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138995856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spin-Orbit Torque and Geometrical Backscattering 自旋轨道转矩和几何反向散射
IF 1.8 4区 物理与天体物理 Q4 PHYSICS, APPLIED Pub Date : 2023-12-14 DOI: 10.1142/s2010324723500339
S. G. Tan, Che-Chun Huang, M. Jalil, Ching-Ray Chang, Szu-Cheng Cheng
{"title":"Spin-Orbit Torque and Geometrical Backscattering","authors":"S. G. Tan, Che-Chun Huang, M. Jalil, Ching-Ray Chang, Szu-Cheng Cheng","doi":"10.1142/s2010324723500339","DOIUrl":"https://doi.org/10.1142/s2010324723500339","url":null,"abstract":"","PeriodicalId":54319,"journal":{"name":"Spin","volume":"14 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139002442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Testing Connectedness of Images 图像连通性测试
IF 1.8 4区 物理与天体物理 Q4 PHYSICS, APPLIED Pub Date : 2023-12-06 DOI: 10.4230/LIPIcs.APPROX/RANDOM.2023.66
Piotr Berman, Meiram Murzabulatov, Sofya Raskhodnikova, Dragos Ristache
We investigate algorithms for testing whether an image is connected. Given a proximity parameter $epsilonin(0,1)$ and query access to a black-and-white image represented by an $ntimes n$ matrix of Boolean pixel values, a (1-sided error) connectedness tester accepts if the image is connected and rejects with probability at least 2/3 if the image is $epsilon$-far from connected. We show that connectedness can be tested nonadaptively with $O(frac 1{epsilon^2})$ queries and adaptively with $O(frac{1}{epsilon^{3/2}} sqrt{logfrac{1}{epsilon}})$ queries. The best connectedness tester to date, by Berman, Raskhodnikova, and Yaroslavtsev (STOC 2014) had query complexity $O(frac 1{epsilon^2}log frac 1{epsilon})$ and was adaptive. We also prove that every nonadaptive, 1-sided error tester for connectedness must make $Omega(frac 1epsilonlog frac 1epsilon)$ queries.
我们研究了用于测试图像是否连接的算法。给定接近度参数λ∈(0,1),以及对由布尔像素值的n × n矩阵表示的黑白图像的查询访问权,如果图像是连通的,则(单侧误差)连通度测试器接受,如果图像是远离连通的,则拒绝的概率至少为2/3。我们证明了连通性可以用O (1 λ 2)查询进行非自适应测试,也可以用O (1 λ 3 / 2p log 1 λ)查询进行自适应测试。迄今为止,由Berman、Raskhodnikova和Yaroslavtsev (STOC 2014)设计的最佳连通性测试仪的查询复杂度为O (1 λ 2 log 1 λ),并且具有自适应性。我们也证明了每一个非自适应的、单侧的连通性误差测试仪必须进行Ω(1 λ log 1 λ)查询。
{"title":"Testing Connectedness of Images","authors":"Piotr Berman, Meiram Murzabulatov, Sofya Raskhodnikova, Dragos Ristache","doi":"10.4230/LIPIcs.APPROX/RANDOM.2023.66","DOIUrl":"https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.66","url":null,"abstract":"We investigate algorithms for testing whether an image is connected. Given a proximity parameter $epsilonin(0,1)$ and query access to a black-and-white image represented by an $ntimes n$ matrix of Boolean pixel values, a (1-sided error) connectedness tester accepts if the image is connected and rejects with probability at least 2/3 if the image is $epsilon$-far from connected. We show that connectedness can be tested nonadaptively with $O(frac 1{epsilon^2})$ queries and adaptively with $O(frac{1}{epsilon^{3/2}} sqrt{logfrac{1}{epsilon}})$ queries. The best connectedness tester to date, by Berman, Raskhodnikova, and Yaroslavtsev (STOC 2014) had query complexity $O(frac 1{epsilon^2}log frac 1{epsilon})$ and was adaptive. We also prove that every nonadaptive, 1-sided error tester for connectedness must make $Omega(frac 1epsilonlog frac 1epsilon)$ queries.","PeriodicalId":54319,"journal":{"name":"Spin","volume":"13 1","pages":"66:1-66:15"},"PeriodicalIF":1.8,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74529591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upper and Lower Bounds for Complete Linkage in General Metric Spaces 广义度量空间中完全连杆的上界和下界
IF 1.8 4区 物理与天体物理 Q4 PHYSICS, APPLIED Pub Date : 2023-11-30 DOI: 10.4230/LIPIcs.APPROX/RANDOM.2021.18
Anna Arutyunova, A. Großwendt, Heiko Röglin, Melanie Schmidt, Julian Wargalla
In a hierarchical clustering problem the task is to compute a series of mutually compatible clusterings of a finite metric space $$(P,{{,textrm{dist},}})$$ ( P , dist ) . Starting with the clustering where every point forms its own cluster, one iteratively merges two clusters until only one cluster remains. Complete linkage is a well-known and popular algorithm to compute such clusterings: in every step it merges the two clusters whose union has the smallest radius (or diameter) among all currently possible merges. We prove that the radius (or diameter) of every k -clustering computed by complete linkage is at most by factor O ( k ) (or $$O(k^{ln (3)/ln (2)})=O(k^{1{.}59})$$ O ( k ln ( 3 ) / ln ( 2 ) ) = O ( k 1.59 ) ) worse than an optimal k -clustering minimizing the radius (or diameter). Furthermore we give a negative answer to the question proposed by Dasgupta and Long (J Comput Syst Sci 70(4):555–569, 2005. https://doi.org/10.1016/j.jcss.2004.10.006 ), who show a lower bound of $$Omega (log (k))$$ Ω ( log ( k ) ) and ask if the approximation guarantee is in fact $$Theta (log (k))$$ Θ ( log ( k ) ) . We present instances where complete linkage performs poorly in the sense that the k -clustering computed by complete linkage is off by a factor of $$Omega (k)$$ Ω ( k ) from an optimal solution for radius and diameter. We conclude that in general metric spaces complete linkage does not perform asymptotically better than single linkage, merging the two clusters with smallest inter-cluster distance, for which we prove an approximation guarantee of O ( k ).
在层次聚类问题中,任务是计算有限度量空间(P, dist)的一系列相互兼容的聚类。从每个点形成自己的簇的聚类开始,迭代地合并两个簇,直到只剩下一个簇。完全链接是计算这类聚类的一种著名且流行的算法:在每一步中,它合并所有当前可能合并的聚类中,其并集的半径(或直径)最小的两个聚类。我们证明了由完全连杆计算的每个k-聚类的半径(或直径)最多比最小化半径(或直径)的最优k-聚类差O(k)(或O(k2))。此外,我们对Dasgupta和Long[6]提出的问题给出了否定的答案,他们给出了Ω(log(k))的下界,并询问近似保证是否实际上是Θ(log(k))。我们提出了完全链接表现不佳的实例,因为由完全链接计算的k-聚类与半径和直径的最优解相差Ω(k)。我们得出结论,在一般度量空间中,完全连杆并不比单连杆具有更好的渐近性能,以最小的簇间距离合并两个簇,为此我们证明了O(k)的近似保证。2012 ACM学科分类计算理论→设施定位与聚类
{"title":"Upper and Lower Bounds for Complete Linkage in General Metric Spaces","authors":"Anna Arutyunova, A. Großwendt, Heiko Röglin, Melanie Schmidt, Julian Wargalla","doi":"10.4230/LIPIcs.APPROX/RANDOM.2021.18","DOIUrl":"https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.18","url":null,"abstract":"In a hierarchical clustering problem the task is to compute a series of mutually compatible clusterings of a finite metric space $$(P,{{,textrm{dist},}})$$ ( P , dist ) . Starting with the clustering where every point forms its own cluster, one iteratively merges two clusters until only one cluster remains. Complete linkage is a well-known and popular algorithm to compute such clusterings: in every step it merges the two clusters whose union has the smallest radius (or diameter) among all currently possible merges. We prove that the radius (or diameter) of every k -clustering computed by complete linkage is at most by factor O ( k ) (or $$O(k^{ln (3)/ln (2)})=O(k^{1{.}59})$$ O ( k ln ( 3 ) / ln ( 2 ) ) = O ( k 1.59 ) ) worse than an optimal k -clustering minimizing the radius (or diameter). Furthermore we give a negative answer to the question proposed by Dasgupta and Long (J Comput Syst Sci 70(4):555–569, 2005. https://doi.org/10.1016/j.jcss.2004.10.006 ), who show a lower bound of $$Omega (log (k))$$ Ω ( log ( k ) ) and ask if the approximation guarantee is in fact $$Theta (log (k))$$ Θ ( log ( k ) ) . We present instances where complete linkage performs poorly in the sense that the k -clustering computed by complete linkage is off by a factor of $$Omega (k)$$ Ω ( k ) from an optimal solution for radius and diameter. We conclude that in general metric spaces complete linkage does not perform asymptotically better than single linkage, merging the two clusters with smallest inter-cluster distance, for which we prove an approximation guarantee of O ( k ).","PeriodicalId":54319,"journal":{"name":"Spin","volume":"27 1","pages":"489-518"},"PeriodicalIF":1.8,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79504194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On The Design of Power Attack Immune Spintronic Associative Memory 论功率攻击免疫自旋电子关联存储器的设计
IF 1.8 4区 物理与天体物理 Q4 PHYSICS, APPLIED Pub Date : 2023-11-17 DOI: 10.1142/s2010324723500327
Milad Gazanfari, Abdolah Amirany, M. H. Moaiyeri, Kian Jafari
{"title":"On The Design of Power Attack Immune Spintronic Associative Memory","authors":"Milad Gazanfari, Abdolah Amirany, M. H. Moaiyeri, Kian Jafari","doi":"10.1142/s2010324723500327","DOIUrl":"https://doi.org/10.1142/s2010324723500327","url":null,"abstract":"","PeriodicalId":54319,"journal":{"name":"Spin","volume":"38 7","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139266545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase Diagrams of a Mixed-Spin-1/2 and Spin-5/2 Hexagonal Nanotube with Core-Shell Structure 核壳结构混合自旋1/2和自旋5/2六方纳米管的相图
4区 物理与天体物理 Q4 PHYSICS, APPLIED Pub Date : 2023-11-10 DOI: 10.1142/s2010324723500315
R. Aharrouch, Y. Al Qahoom, K. El Kihel, M. Madani, M. El Bouziani
{"title":"Phase Diagrams of a Mixed-Spin-1/2 and Spin-5/2 Hexagonal Nanotube with Core-Shell Structure","authors":"R. Aharrouch, Y. Al Qahoom, K. El Kihel, M. Madani, M. El Bouziani","doi":"10.1142/s2010324723500315","DOIUrl":"https://doi.org/10.1142/s2010324723500315","url":null,"abstract":"","PeriodicalId":54319,"journal":{"name":"Spin","volume":" June","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135186529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Spin
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1