番泻叶甙通过减轻氧化应激和保护线粒体功能减轻大鼠心肌缺血再灌注损伤。

Cell Stress and Chaperones Pub Date : 2016-05-01 Epub Date: 2016-01-22 DOI:10.1007/s12192-016-0669-5
Haijie Yu, Qigang Guan, Liang Guo, Haishan Zhang, Xuefeng Pang, Ying Cheng, Xingang Zhang, Yingxian Sun
{"title":"番泻叶甙通过减轻氧化应激和保护线粒体功能减轻大鼠心肌缺血再灌注损伤。","authors":"Haijie Yu, Qigang Guan, Liang Guo, Haishan Zhang, Xuefeng Pang, Ying Cheng, Xingang Zhang, Yingxian Sun","doi":"10.1007/s12192-016-0669-5","DOIUrl":null,"url":null,"abstract":"<p><p>Gypenosides (GP) are the predominant components of Gynostemma pentaphyllum, a Chinese herb medicine that has been widely used for the treatment of chronic inflammation, hyperlipidemia, and cardiovascular disease. GP has been demonstrated to exert protective effects on the liver and brain against ischemia-reperfusion (I/R) injury, yet whether it is beneficial to the heart during myocardial I/R is unclear. In this study, we demonstrate that pre-treatment with GP dose-dependently limits infarct size, alleviates I/R-induced pathological changes in the myocardium, and preserves left ventricular function in a rat model of cardiac I/R injury. In addition, GP pre-treatment reduces oxidative stress and protects the intracellular antioxidant machinery in the myocardium. Further, we show that the cardioprotective effect of GP is associated with the preservation of mitochondrial function in the cardiomyocytes, as indicated by ATP level, enzymatic activities of complex I, II, and IV on the mitochondrial respiration chain, and the activity of citrate synthase in the citric acid cycle for energy generation. Moreover, GP maintains mitochondrial membrane integrity and inhibits the release of cytochrome c from the mitochondria to the cytosol. The cytoprotective effect of GP is further confirmed in vitro in H9c2 cardiomyoblast cell line with oxygen-glucose deprivation and reperfusion (OGD/R), and the results indicate that GP protects cell viability, reduces oxidative stress, and preserves mitochondrial function. In conclusion, our study suggests that GP may be of clinical value in cytoprotection during acute myocardial infarction and reperfusion.</p>","PeriodicalId":9812,"journal":{"name":"Cell Stress and Chaperones","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4837178/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gypenosides alleviate myocardial ischemia-reperfusion injury via attenuation of oxidative stress and preservation of mitochondrial function in rat heart.\",\"authors\":\"Haijie Yu, Qigang Guan, Liang Guo, Haishan Zhang, Xuefeng Pang, Ying Cheng, Xingang Zhang, Yingxian Sun\",\"doi\":\"10.1007/s12192-016-0669-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gypenosides (GP) are the predominant components of Gynostemma pentaphyllum, a Chinese herb medicine that has been widely used for the treatment of chronic inflammation, hyperlipidemia, and cardiovascular disease. GP has been demonstrated to exert protective effects on the liver and brain against ischemia-reperfusion (I/R) injury, yet whether it is beneficial to the heart during myocardial I/R is unclear. In this study, we demonstrate that pre-treatment with GP dose-dependently limits infarct size, alleviates I/R-induced pathological changes in the myocardium, and preserves left ventricular function in a rat model of cardiac I/R injury. In addition, GP pre-treatment reduces oxidative stress and protects the intracellular antioxidant machinery in the myocardium. Further, we show that the cardioprotective effect of GP is associated with the preservation of mitochondrial function in the cardiomyocytes, as indicated by ATP level, enzymatic activities of complex I, II, and IV on the mitochondrial respiration chain, and the activity of citrate synthase in the citric acid cycle for energy generation. Moreover, GP maintains mitochondrial membrane integrity and inhibits the release of cytochrome c from the mitochondria to the cytosol. The cytoprotective effect of GP is further confirmed in vitro in H9c2 cardiomyoblast cell line with oxygen-glucose deprivation and reperfusion (OGD/R), and the results indicate that GP protects cell viability, reduces oxidative stress, and preserves mitochondrial function. In conclusion, our study suggests that GP may be of clinical value in cytoprotection during acute myocardial infarction and reperfusion.</p>\",\"PeriodicalId\":9812,\"journal\":{\"name\":\"Cell Stress and Chaperones\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4837178/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Stress and Chaperones\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12192-016-0669-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/1/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Stress and Chaperones","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12192-016-0669-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/1/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

绞股蓝苷(GP)是绞股蓝的主要成分,绞股蓝是一种中草药,被广泛用于治疗慢性炎症、高脂血症和心血管疾病。绞股蓝已被证明对肝脏和大脑的缺血再灌注(I/R)损伤具有保护作用,但它是否对心肌 I/R 期间的心脏有益还不清楚。在这项研究中,我们证明了在大鼠心肌I/R损伤模型中,GP的预处理剂量依赖性地限制了心肌梗死的大小,减轻了I/R引起的心肌病理变化,并保护了左心室功能。此外,GP 预处理还能降低氧化应激,保护心肌细胞内的抗氧化机制。此外,我们还发现 GP 的心脏保护作用与心肌细胞线粒体功能的保护有关,这体现在 ATP 水平、线粒体呼吸链上复合体 I、II 和 IV 的酶活性以及柠檬酸循环中柠檬酸合成酶产生能量的活性上。此外,GP 还能保持线粒体膜的完整性,抑制细胞色素 c 从线粒体释放到细胞膜。在体外对 H9c2 心肌细胞系进行氧-葡萄糖剥夺和再灌注(OGD/R)试验时,进一步证实了 GP 的细胞保护作用,结果表明 GP 可保护细胞活力、减少氧化应激和保护线粒体功能。总之,我们的研究表明,GP 在急性心肌梗死和再灌注期间可能具有细胞保护的临床价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gypenosides alleviate myocardial ischemia-reperfusion injury via attenuation of oxidative stress and preservation of mitochondrial function in rat heart.

Gypenosides (GP) are the predominant components of Gynostemma pentaphyllum, a Chinese herb medicine that has been widely used for the treatment of chronic inflammation, hyperlipidemia, and cardiovascular disease. GP has been demonstrated to exert protective effects on the liver and brain against ischemia-reperfusion (I/R) injury, yet whether it is beneficial to the heart during myocardial I/R is unclear. In this study, we demonstrate that pre-treatment with GP dose-dependently limits infarct size, alleviates I/R-induced pathological changes in the myocardium, and preserves left ventricular function in a rat model of cardiac I/R injury. In addition, GP pre-treatment reduces oxidative stress and protects the intracellular antioxidant machinery in the myocardium. Further, we show that the cardioprotective effect of GP is associated with the preservation of mitochondrial function in the cardiomyocytes, as indicated by ATP level, enzymatic activities of complex I, II, and IV on the mitochondrial respiration chain, and the activity of citrate synthase in the citric acid cycle for energy generation. Moreover, GP maintains mitochondrial membrane integrity and inhibits the release of cytochrome c from the mitochondria to the cytosol. The cytoprotective effect of GP is further confirmed in vitro in H9c2 cardiomyoblast cell line with oxygen-glucose deprivation and reperfusion (OGD/R), and the results indicate that GP protects cell viability, reduces oxidative stress, and preserves mitochondrial function. In conclusion, our study suggests that GP may be of clinical value in cytoprotection during acute myocardial infarction and reperfusion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification and functional characterization of a novel TRPA1 gene from sea cucumber Apostichopus japonicus and interaction with miR-2013 in response to salt stress In memoriam: Ian R. Brown (1943–2020) Canine osteosarcoma cells exhibit basal accumulation of multiple chaperone proteins and are sensitive to small molecule inhibitors of GRP78 and heat shock protein function. Endoplasmic reticulum-unfolded protein response pathway modulates the cellular response to mitochondrial proteotoxic stress. Correction to: Molecular basis for efficacy of Guduchi and Madhuyashti feeding on different environmental stressors in Drosophila.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1