苏州岩体中硅酸盐液-液不混相形成高场强富元素闪辉岩

IF 5.5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Economic Geology Pub Date : 2022-10-25 DOI:10.5382/econgeo.4965
Lei Xie, Rucheng Wang, Huan Hu, S. Erdmann
{"title":"苏州岩体中硅酸盐液-液不混相形成高场强富元素闪辉岩","authors":"Lei Xie, Rucheng Wang, Huan Hu, S. Erdmann","doi":"10.5382/econgeo.4965","DOIUrl":null,"url":null,"abstract":"\n Understanding the formation of high field strength element (HFSE) mineralization remains a challenge. Processes ranging from melt generation to final crystallization have been invoked to play a key role in the enrichment of HFSEs in magmatic-hydrothermal systems, yet the importance of crystal-liquid fractionation, liquid immiscibility, and/or fluid unmixing remains debated. Here, we present results of a study of granites and HFSE-mineralized glimmerites from the granitic Suzhou pluton, eastern China. We provide whole-rock major and trace element compositions, a description of mineral assemblages, and a detailed description of zircon textures, zircon Raman spectra, zircon major and trace element and δ18O compositions, and U-Pb ages. The granites and glimmerites have been dated at ~126–124 Ma and are thus coeval. The granites range from biotite and zircon poor to biotite and zircon rich and are in contact with glimmerites. The glimmerites form lenses and layers close to and along the margin of the Suzhou granite, comprising up to ~37 vol % biotite and up to ~2 vol % zircon and other HFSE-rich accessory minerals. The biotite-poor granites contain a single type of zircon (type-A: single crystals, oscillatory zoned, fully crystallized structure, relatively poor in trace elements, and relatively high δ18O), whereas the biotite-rich granites and the glimmerites contain two zircon types (type-A crystals: same features as in the biotite-poor granites; type-B crystals: clustered, unzoned, partially metamict structure, rich in trace elements, and relatively low δ18O). Both granite types are Si, Al, and Na rich, whereas the glimmerites are Fe, Ti, Mn, Mg, Ca, P, F, and HFSE rich and, compositionally, fall off simple fractionation trends. We interpret the textural, mineralogical, and compositional relationships to indicate that the glimmerites are the products of Fe-, F-, and HFSE-rich immiscible melts that unmixed from an alkali-rich, moderately reducing (~QFM + 0.5 and ~QFM + 1.0; QFM = quartz-fayalite-magnetite buffer) Suzhou magma system at low crustal pressure. In addition, we note that the zircon textures and compositions are important recorders of the processes and conditions that led to the HFSE mineralization.","PeriodicalId":11469,"journal":{"name":"Economic Geology","volume":"21 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Formation of High Field Strength Element-Rich Glimmerites by Silicate Liquid-Liquid Immiscibility, Suzhou Pluton, Eastern China\",\"authors\":\"Lei Xie, Rucheng Wang, Huan Hu, S. Erdmann\",\"doi\":\"10.5382/econgeo.4965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Understanding the formation of high field strength element (HFSE) mineralization remains a challenge. Processes ranging from melt generation to final crystallization have been invoked to play a key role in the enrichment of HFSEs in magmatic-hydrothermal systems, yet the importance of crystal-liquid fractionation, liquid immiscibility, and/or fluid unmixing remains debated. Here, we present results of a study of granites and HFSE-mineralized glimmerites from the granitic Suzhou pluton, eastern China. We provide whole-rock major and trace element compositions, a description of mineral assemblages, and a detailed description of zircon textures, zircon Raman spectra, zircon major and trace element and δ18O compositions, and U-Pb ages. The granites and glimmerites have been dated at ~126–124 Ma and are thus coeval. The granites range from biotite and zircon poor to biotite and zircon rich and are in contact with glimmerites. The glimmerites form lenses and layers close to and along the margin of the Suzhou granite, comprising up to ~37 vol % biotite and up to ~2 vol % zircon and other HFSE-rich accessory minerals. The biotite-poor granites contain a single type of zircon (type-A: single crystals, oscillatory zoned, fully crystallized structure, relatively poor in trace elements, and relatively high δ18O), whereas the biotite-rich granites and the glimmerites contain two zircon types (type-A crystals: same features as in the biotite-poor granites; type-B crystals: clustered, unzoned, partially metamict structure, rich in trace elements, and relatively low δ18O). Both granite types are Si, Al, and Na rich, whereas the glimmerites are Fe, Ti, Mn, Mg, Ca, P, F, and HFSE rich and, compositionally, fall off simple fractionation trends. We interpret the textural, mineralogical, and compositional relationships to indicate that the glimmerites are the products of Fe-, F-, and HFSE-rich immiscible melts that unmixed from an alkali-rich, moderately reducing (~QFM + 0.5 and ~QFM + 1.0; QFM = quartz-fayalite-magnetite buffer) Suzhou magma system at low crustal pressure. In addition, we note that the zircon textures and compositions are important recorders of the processes and conditions that led to the HFSE mineralization.\",\"PeriodicalId\":11469,\"journal\":{\"name\":\"Economic Geology\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Economic Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5382/econgeo.4965\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economic Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5382/econgeo.4965","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1

摘要

了解高场强元素(HFSE)矿化的形成仍然是一个挑战。从熔体生成到最终结晶的过程被认为在岩浆-热液系统中hfse的富集中起着关键作用,然而晶体-液体分馏、液体不混溶和/或流体分离的重要性仍然存在争议。本文报道了中国东部苏州市花岗质岩体中花岗岩和hfse矿化闪辉岩的研究结果。我们提供了全岩主微量元素组成、矿物组合描述、锆石结构、锆石拉曼光谱、锆石主微量元素和δ18O组成以及U-Pb年龄的详细描述。花岗岩和闪辉岩的年代为~126 ~ 124 Ma,属于同一年代。花岗岩从缺乏黑云母和锆石到富含黑云母和锆石,并与闪辉岩接触。闪辉岩靠近和沿苏州花岗岩边缘形成透镜状和层状,含黑云母高达~37 vol %,锆石高达~2 vol %,以及其他富氢硒的副矿物。贫黑云母花岗岩含单一类型的锆石(a型:单晶,振荡带状,完全结晶结构,微量元素含量相对较差,δ18O值较高),而富黑云母花岗岩和闪辉岩含两种锆石(a型:与贫黑云母花岗岩相同的特征);b型晶体:簇状、无分带、部分变质结构,微量元素丰富,δ18O值较低。两种花岗岩类型均富含Si、Al和Na,而微光岩则富含Fe、Ti、Mn、Mg、Ca、P、F和HFSE,且在成分上呈简单分选趋势。我们解释了结构、矿物学和成分关系,表明闪辉石是富Fe、富F和富hfse的不混相熔体的产物,这些熔体是从富碱、适度还原(~QFM + 0.5和~QFM + 1.0;低地压下的苏州岩浆系(石英-费长石-磁铁矿缓冲)。此外,锆石结构和组成是导致HFSE成矿的过程和条件的重要记录者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Formation of High Field Strength Element-Rich Glimmerites by Silicate Liquid-Liquid Immiscibility, Suzhou Pluton, Eastern China
Understanding the formation of high field strength element (HFSE) mineralization remains a challenge. Processes ranging from melt generation to final crystallization have been invoked to play a key role in the enrichment of HFSEs in magmatic-hydrothermal systems, yet the importance of crystal-liquid fractionation, liquid immiscibility, and/or fluid unmixing remains debated. Here, we present results of a study of granites and HFSE-mineralized glimmerites from the granitic Suzhou pluton, eastern China. We provide whole-rock major and trace element compositions, a description of mineral assemblages, and a detailed description of zircon textures, zircon Raman spectra, zircon major and trace element and δ18O compositions, and U-Pb ages. The granites and glimmerites have been dated at ~126–124 Ma and are thus coeval. The granites range from biotite and zircon poor to biotite and zircon rich and are in contact with glimmerites. The glimmerites form lenses and layers close to and along the margin of the Suzhou granite, comprising up to ~37 vol % biotite and up to ~2 vol % zircon and other HFSE-rich accessory minerals. The biotite-poor granites contain a single type of zircon (type-A: single crystals, oscillatory zoned, fully crystallized structure, relatively poor in trace elements, and relatively high δ18O), whereas the biotite-rich granites and the glimmerites contain two zircon types (type-A crystals: same features as in the biotite-poor granites; type-B crystals: clustered, unzoned, partially metamict structure, rich in trace elements, and relatively low δ18O). Both granite types are Si, Al, and Na rich, whereas the glimmerites are Fe, Ti, Mn, Mg, Ca, P, F, and HFSE rich and, compositionally, fall off simple fractionation trends. We interpret the textural, mineralogical, and compositional relationships to indicate that the glimmerites are the products of Fe-, F-, and HFSE-rich immiscible melts that unmixed from an alkali-rich, moderately reducing (~QFM + 0.5 and ~QFM + 1.0; QFM = quartz-fayalite-magnetite buffer) Suzhou magma system at low crustal pressure. In addition, we note that the zircon textures and compositions are important recorders of the processes and conditions that led to the HFSE mineralization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Economic Geology
Economic Geology 地学-地球化学与地球物理
CiteScore
10.00
自引率
6.90%
发文量
120
审稿时长
6 months
期刊介绍: The journal, now published semi-quarterly, was first published in 1905 by the Economic Geology Publishing Company (PUBCO), a not-for-profit company established for the purpose of publishing a periodical devoted to economic geology. On the founding of SEG in 1920, a cooperative arrangement between PUBCO and SEG made the journal the official organ of the Society, and PUBCO agreed to carry the Society''s name on the front cover under the heading "Bulletin of the Society of Economic Geologists". PUBCO and SEG continued to operate as cooperating but separate entities until 2001, when the Board of Directors of PUBCO and the Council of SEG, by unanimous consent, approved a formal agreement of merger. The former activities of the PUBCO Board of Directors are now carried out by a Publications Board, a new self-governing unit within SEG.
期刊最新文献
Cu-Au-Platinum Group Element Mineralization in the Mbesa Prospect, Southern Tanzania: Unconventional Magmatic Sulfides Epithermal Gold Discoveries in the Emerging Khundii Metallogenic Province, Southwest Mongolia Discriminating Superimposed Alteration Associated with Epigenetic Base and Precious Metal Vein Systems in the Rouyn-Noranda Mining District, Quebec; Implications for Exploration in Ancient Volcanic Districts Zircon and Whole-Rock Trace Element Indicators of Magmatic Hydration State and Oxidation State Discriminate Copper Ore-Forming from Barren Arc Magmas PLUME-GENERATED 90° STRESS CHANGE LINKED TO TRANSITION FROM RADIATING TO CIRCUMFERENTIAL DOLERITE DIKE SWARMS OF THE SIBERIAN TRAPS LARGE IGNEOUS PROVINCE AND TO EMPLACEMENT OF THE NORILSK-TALNAKH ORE DEPOSITS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1