基于关键帧的局部正态分布变换环境映射占用图

D. Belter, K. Piaskowski, Rafal Staszak
{"title":"基于关键帧的局部正态分布变换环境映射占用图","authors":"D. Belter, K. Piaskowski, Rafal Staszak","doi":"10.1109/ETFA.2018.8502517","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new mapping method based on Normal Distribution Transform Occupancy Maps (NDT-OM) for environment exploration. Our goal is to propose a new architecture which can be used by an industrial mobile robot in a priori unknown environment. The mobile robot introduced in a new environment has to explore the workspace, localize itself and build a map. Current state of the art methods require storing all data collected during this stage and finally build a dense model of the environment. We propose a method which allows building local dense maps of the environment which are organized in a graph-like structure. The change in the registered trajectory of the robot, which may occur after loop closure detection, can be easily utilized by our architecture. Finally, we build a global map which can be later used for collision checking and motion planning.","PeriodicalId":6566,"journal":{"name":"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"23 1","pages":"706-712"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Keyframe-based Local Normal Distribution Transform Occupancy Maps for Environment Mapping\",\"authors\":\"D. Belter, K. Piaskowski, Rafal Staszak\",\"doi\":\"10.1109/ETFA.2018.8502517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new mapping method based on Normal Distribution Transform Occupancy Maps (NDT-OM) for environment exploration. Our goal is to propose a new architecture which can be used by an industrial mobile robot in a priori unknown environment. The mobile robot introduced in a new environment has to explore the workspace, localize itself and build a map. Current state of the art methods require storing all data collected during this stage and finally build a dense model of the environment. We propose a method which allows building local dense maps of the environment which are organized in a graph-like structure. The change in the registered trajectory of the robot, which may occur after loop closure detection, can be easily utilized by our architecture. Finally, we build a global map which can be later used for collision checking and motion planning.\",\"PeriodicalId\":6566,\"journal\":{\"name\":\"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"volume\":\"23 1\",\"pages\":\"706-712\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2018.8502517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2018.8502517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于正态分布变换占用图(NDT-OM)的环境勘探新方法。我们的目标是提出一种新的架构,可以在先验未知环境中用于工业移动机器人。移动机器人被引入到一个新的环境中,需要对工作空间进行探索、定位和绘制地图。目前最先进的方法需要存储在此阶段收集的所有数据,并最终构建环境的密集模型。我们提出了一种方法,该方法允许以类似图的结构组织环境的局部密集地图。在闭环检测之后,机器人注册轨迹的变化可以很容易地被我们的体系结构利用。最后,我们建立了一个全局地图,可以用于碰撞检查和运动规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Keyframe-based Local Normal Distribution Transform Occupancy Maps for Environment Mapping
In this paper, we propose a new mapping method based on Normal Distribution Transform Occupancy Maps (NDT-OM) for environment exploration. Our goal is to propose a new architecture which can be used by an industrial mobile robot in a priori unknown environment. The mobile robot introduced in a new environment has to explore the workspace, localize itself and build a map. Current state of the art methods require storing all data collected during this stage and finally build a dense model of the environment. We propose a method which allows building local dense maps of the environment which are organized in a graph-like structure. The change in the registered trajectory of the robot, which may occur after loop closure detection, can be easily utilized by our architecture. Finally, we build a global map which can be later used for collision checking and motion planning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scheduling and Situation-Adaptive Operation for Energy Efficiency of Hot Press Forging Factory Application of the Internet of Things (IoT) Technology in Consumer Electronics - Case Study Moving Average control chart for the detection and isolation of temporal faults in stochastic Petri nets A Prototype Implementation of Wi-Fi Seamless Redundancy with Reactive Duplication Avoidance Continuous Maintenance System for Optimal Scheduling Based on Real-Time Machine Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1