{"title":"基于关键帧的局部正态分布变换环境映射占用图","authors":"D. Belter, K. Piaskowski, Rafal Staszak","doi":"10.1109/ETFA.2018.8502517","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new mapping method based on Normal Distribution Transform Occupancy Maps (NDT-OM) for environment exploration. Our goal is to propose a new architecture which can be used by an industrial mobile robot in a priori unknown environment. The mobile robot introduced in a new environment has to explore the workspace, localize itself and build a map. Current state of the art methods require storing all data collected during this stage and finally build a dense model of the environment. We propose a method which allows building local dense maps of the environment which are organized in a graph-like structure. The change in the registered trajectory of the robot, which may occur after loop closure detection, can be easily utilized by our architecture. Finally, we build a global map which can be later used for collision checking and motion planning.","PeriodicalId":6566,"journal":{"name":"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"23 1","pages":"706-712"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Keyframe-based Local Normal Distribution Transform Occupancy Maps for Environment Mapping\",\"authors\":\"D. Belter, K. Piaskowski, Rafal Staszak\",\"doi\":\"10.1109/ETFA.2018.8502517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new mapping method based on Normal Distribution Transform Occupancy Maps (NDT-OM) for environment exploration. Our goal is to propose a new architecture which can be used by an industrial mobile robot in a priori unknown environment. The mobile robot introduced in a new environment has to explore the workspace, localize itself and build a map. Current state of the art methods require storing all data collected during this stage and finally build a dense model of the environment. We propose a method which allows building local dense maps of the environment which are organized in a graph-like structure. The change in the registered trajectory of the robot, which may occur after loop closure detection, can be easily utilized by our architecture. Finally, we build a global map which can be later used for collision checking and motion planning.\",\"PeriodicalId\":6566,\"journal\":{\"name\":\"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"volume\":\"23 1\",\"pages\":\"706-712\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2018.8502517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2018.8502517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Keyframe-based Local Normal Distribution Transform Occupancy Maps for Environment Mapping
In this paper, we propose a new mapping method based on Normal Distribution Transform Occupancy Maps (NDT-OM) for environment exploration. Our goal is to propose a new architecture which can be used by an industrial mobile robot in a priori unknown environment. The mobile robot introduced in a new environment has to explore the workspace, localize itself and build a map. Current state of the art methods require storing all data collected during this stage and finally build a dense model of the environment. We propose a method which allows building local dense maps of the environment which are organized in a graph-like structure. The change in the registered trajectory of the robot, which may occur after loop closure detection, can be easily utilized by our architecture. Finally, we build a global map which can be later used for collision checking and motion planning.