Joshua B. Leners, Hao-Che Wu, W. Hung, M. Aguilera, Michael Walfish
{"title":"用猎鹰间谍网络检测分布式系统的故障","authors":"Joshua B. Leners, Hao-Che Wu, W. Hung, M. Aguilera, Michael Walfish","doi":"10.1145/2043556.2043583","DOIUrl":null,"url":null,"abstract":"A common way for a distributed system to tolerate crashes is to explicitly detect them and then recover from them. Interestingly, detection can take much longer than recovery, as a result of many advances in recovery techniques, making failure detection the dominant factor in these systems' unavailability when a crash occurs. This paper presents the design, implementation, and evaluation of Falcon, a failure detector with several features. First, Falcon's common-case detection time is sub-second, which keeps unavailability low. Second, Falcon is reliable: it never reports a process as down when it is actually up. Third, Falcon sometimes kills to achieve reliable detection but aims to kill the smallest needed component. Falcon achieves these features by coordinating a network of spies, each monitoring a layer of the system. Falcon's main cost is a small amount of platform-specific logic. Falcon is thus the first failure detector that is fast, reliable, and viable. As such, it could change the way that a class of distributed systems is built.","PeriodicalId":20672,"journal":{"name":"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles","volume":"30 8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"107","resultStr":"{\"title\":\"Detecting failures in distributed systems with the Falcon spy network\",\"authors\":\"Joshua B. Leners, Hao-Che Wu, W. Hung, M. Aguilera, Michael Walfish\",\"doi\":\"10.1145/2043556.2043583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A common way for a distributed system to tolerate crashes is to explicitly detect them and then recover from them. Interestingly, detection can take much longer than recovery, as a result of many advances in recovery techniques, making failure detection the dominant factor in these systems' unavailability when a crash occurs. This paper presents the design, implementation, and evaluation of Falcon, a failure detector with several features. First, Falcon's common-case detection time is sub-second, which keeps unavailability low. Second, Falcon is reliable: it never reports a process as down when it is actually up. Third, Falcon sometimes kills to achieve reliable detection but aims to kill the smallest needed component. Falcon achieves these features by coordinating a network of spies, each monitoring a layer of the system. Falcon's main cost is a small amount of platform-specific logic. Falcon is thus the first failure detector that is fast, reliable, and viable. As such, it could change the way that a class of distributed systems is built.\",\"PeriodicalId\":20672,\"journal\":{\"name\":\"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles\",\"volume\":\"30 8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"107\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2043556.2043583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2043556.2043583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detecting failures in distributed systems with the Falcon spy network
A common way for a distributed system to tolerate crashes is to explicitly detect them and then recover from them. Interestingly, detection can take much longer than recovery, as a result of many advances in recovery techniques, making failure detection the dominant factor in these systems' unavailability when a crash occurs. This paper presents the design, implementation, and evaluation of Falcon, a failure detector with several features. First, Falcon's common-case detection time is sub-second, which keeps unavailability low. Second, Falcon is reliable: it never reports a process as down when it is actually up. Third, Falcon sometimes kills to achieve reliable detection but aims to kill the smallest needed component. Falcon achieves these features by coordinating a network of spies, each monitoring a layer of the system. Falcon's main cost is a small amount of platform-specific logic. Falcon is thus the first failure detector that is fast, reliable, and viable. As such, it could change the way that a class of distributed systems is built.