基于特征选择的字符串核支持向量机蛋白质分类

Wen-Yun Yang, Bao-Liang Lu
{"title":"基于特征选择的字符串核支持向量机蛋白质分类","authors":"Wen-Yun Yang, Bao-Liang Lu","doi":"10.1142/9781848161092_0004","DOIUrl":null,"url":null,"abstract":"We introduce a general framework for string kernels. This framework can produce various types of kernels, including a number of existing kernels, to be used with support vector machines (SVMs). In this framework, we can select the informative subsequences to reduce the dimensionality of the feature space. We can model the mutations in biological sequences. Finally, we combine contributions of subsequences in a weighted fashion to get the target kernel. In practical computation, we develop a novel tree structure, coupled with a traversal algorithm to speed up the computation. The experimental results on a benchmark SCOP data set show that the kernels produced by our framework outperform the existing spectrum kernels, in both e‐ciency and ROC50 scores.","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"15 1","pages":"9-18"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"String Kernels with Feature Selection for SVM Protein Classification\",\"authors\":\"Wen-Yun Yang, Bao-Liang Lu\",\"doi\":\"10.1142/9781848161092_0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a general framework for string kernels. This framework can produce various types of kernels, including a number of existing kernels, to be used with support vector machines (SVMs). In this framework, we can select the informative subsequences to reduce the dimensionality of the feature space. We can model the mutations in biological sequences. Finally, we combine contributions of subsequences in a weighted fashion to get the target kernel. In practical computation, we develop a novel tree structure, coupled with a traversal algorithm to speed up the computation. The experimental results on a benchmark SCOP data set show that the kernels produced by our framework outperform the existing spectrum kernels, in both e‐ciency and ROC50 scores.\",\"PeriodicalId\":74513,\"journal\":{\"name\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"volume\":\"15 1\",\"pages\":\"9-18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9781848161092_0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781848161092_0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们介绍了字符串内核的一般框架。该框架可以生成各种类型的内核,包括许多现有的内核,用于支持向量机(svm)。在这个框架中,我们可以选择信息子序列来降低特征空间的维数。我们可以模拟生物序列中的突变。最后,我们以加权的方式组合子序列的贡献来得到目标核。在实际计算中,我们开发了一种新的树状结构,并结合遍历算法来加快计算速度。在基准SCOP数据集上的实验结果表明,我们的框架生成的核在e - ciency和ROC50分数上都优于现有的频谱核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
String Kernels with Feature Selection for SVM Protein Classification
We introduce a general framework for string kernels. This framework can produce various types of kernels, including a number of existing kernels, to be used with support vector machines (SVMs). In this framework, we can select the informative subsequences to reduce the dimensionality of the feature space. We can model the mutations in biological sequences. Finally, we combine contributions of subsequences in a weighted fashion to get the target kernel. In practical computation, we develop a novel tree structure, coupled with a traversal algorithm to speed up the computation. The experimental results on a benchmark SCOP data set show that the kernels produced by our framework outperform the existing spectrum kernels, in both e‐ciency and ROC50 scores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tuning Privacy-Utility Tradeoff in Genomic Studies Using Selective SNP Hiding. The Future of Bioinformatics CHEMICAL COMPOUND CLASSIFICATION WITH AUTOMATICALLY MINED STRUCTURE PATTERNS. Predicting Nucleolar Proteins Using Support-Vector Machines Proceedings of the 6th Asia-Pacific Bioinformatics Conference, APBC 2008, 14-17 January 2008, Kyoto, Japan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1