{"title":"基于低压BD-FC-OTA的do - ccii及其在低频信号处理中的应用","authors":"Tripurari Sharan, Akho John Richa","doi":"10.1109/ComPE49325.2020.9199999","DOIUrl":null,"url":null,"abstract":"This paper presents a positive and negative both of second-generation current conveyor (DO-CCII) cell as a single circuit. The input core of this cell has utilized an adaptively biased bulk-driven pMOS input pair and folded cascode load based OTA. This OTA section has ensured GBW, PM and CMRR of 13.7 kHz, 86.5 degree and 113 dB, respectively with a 15 pF load capacitor and a ± 0.25 V bias supply. The OTA section provided a wide input common mode range, wide output signal swing with good linearity. The output section of DO-CCII cell uses two CMOS inverter to yield its X and Z+ terminals whereas its Z− terminal is generated by using cross coupled low-voltage current mirrors. The DO-CCII cell has provided wide voltage and current DC sweep range with very good linearity. When measured between the frequency ranges of 1 Hz to 100 kHz, the voltage gain and current gains are found to be close to unity. The designed DO-CCII cells have been utilized in design of current mode SIMO filter, oscillator and variable gain current mode instrumentation amplifier (CMIA) which confirms its usability in small frequency bio-signal processing applications. These circuits have been simulated in 180 nm CMOS bulk process technology using Tanner EDA tool of version 16.1.","PeriodicalId":6804,"journal":{"name":"2020 International Conference on Computational Performance Evaluation (ComPE)","volume":"71 1","pages":"584-591"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-voltage BD-FC-OTA based-DO-CCII and its Applications for Low-Frequency Signal Processing\",\"authors\":\"Tripurari Sharan, Akho John Richa\",\"doi\":\"10.1109/ComPE49325.2020.9199999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a positive and negative both of second-generation current conveyor (DO-CCII) cell as a single circuit. The input core of this cell has utilized an adaptively biased bulk-driven pMOS input pair and folded cascode load based OTA. This OTA section has ensured GBW, PM and CMRR of 13.7 kHz, 86.5 degree and 113 dB, respectively with a 15 pF load capacitor and a ± 0.25 V bias supply. The OTA section provided a wide input common mode range, wide output signal swing with good linearity. The output section of DO-CCII cell uses two CMOS inverter to yield its X and Z+ terminals whereas its Z− terminal is generated by using cross coupled low-voltage current mirrors. The DO-CCII cell has provided wide voltage and current DC sweep range with very good linearity. When measured between the frequency ranges of 1 Hz to 100 kHz, the voltage gain and current gains are found to be close to unity. The designed DO-CCII cells have been utilized in design of current mode SIMO filter, oscillator and variable gain current mode instrumentation amplifier (CMIA) which confirms its usability in small frequency bio-signal processing applications. These circuits have been simulated in 180 nm CMOS bulk process technology using Tanner EDA tool of version 16.1.\",\"PeriodicalId\":6804,\"journal\":{\"name\":\"2020 International Conference on Computational Performance Evaluation (ComPE)\",\"volume\":\"71 1\",\"pages\":\"584-591\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Computational Performance Evaluation (ComPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ComPE49325.2020.9199999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computational Performance Evaluation (ComPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ComPE49325.2020.9199999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-voltage BD-FC-OTA based-DO-CCII and its Applications for Low-Frequency Signal Processing
This paper presents a positive and negative both of second-generation current conveyor (DO-CCII) cell as a single circuit. The input core of this cell has utilized an adaptively biased bulk-driven pMOS input pair and folded cascode load based OTA. This OTA section has ensured GBW, PM and CMRR of 13.7 kHz, 86.5 degree and 113 dB, respectively with a 15 pF load capacitor and a ± 0.25 V bias supply. The OTA section provided a wide input common mode range, wide output signal swing with good linearity. The output section of DO-CCII cell uses two CMOS inverter to yield its X and Z+ terminals whereas its Z− terminal is generated by using cross coupled low-voltage current mirrors. The DO-CCII cell has provided wide voltage and current DC sweep range with very good linearity. When measured between the frequency ranges of 1 Hz to 100 kHz, the voltage gain and current gains are found to be close to unity. The designed DO-CCII cells have been utilized in design of current mode SIMO filter, oscillator and variable gain current mode instrumentation amplifier (CMIA) which confirms its usability in small frequency bio-signal processing applications. These circuits have been simulated in 180 nm CMOS bulk process technology using Tanner EDA tool of version 16.1.