基于长短期记忆神经网络的小时能耗分析与预测

Rubina Akter, Jae-Min Lee, Dong-Seong Kim
{"title":"基于长短期记忆神经网络的小时能耗分析与预测","authors":"Rubina Akter, Jae-Min Lee, Dong-Seong Kim","doi":"10.1109/ICOIN50884.2021.9333968","DOIUrl":null,"url":null,"abstract":"Due to the advancements of electricity dependent machinery, the excessive growth of power consumption has increased exponentially. Therefore, analysis and prediction of the energy consumption system will offer the future demand for electricity consumption and improve the power distribution system. On account of several challenges of existing energy consumption prediction models that are limiting to predict the actual energy consumption properly. Thus, to conquer the energy prediction method, this paper analyzes fourteen years of energy consumption data collected on an hourly basis, an open source dataset from kaggle. Moreover, the paper initiates a Long Short Term Memory (LSTM) based approach to predict the energy consumption based on the actual dataset. The empirical results demonstrate that the proposed LSTM architecture can efficiently enhance the prediction accuracy of energy consumption.","PeriodicalId":6741,"journal":{"name":"2021 International Conference on Information Networking (ICOIN)","volume":"136 1","pages":"732-734"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Analysis and Prediction of Hourly Energy Consumption Based on Long Short-Term Memory Neural Network\",\"authors\":\"Rubina Akter, Jae-Min Lee, Dong-Seong Kim\",\"doi\":\"10.1109/ICOIN50884.2021.9333968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the advancements of electricity dependent machinery, the excessive growth of power consumption has increased exponentially. Therefore, analysis and prediction of the energy consumption system will offer the future demand for electricity consumption and improve the power distribution system. On account of several challenges of existing energy consumption prediction models that are limiting to predict the actual energy consumption properly. Thus, to conquer the energy prediction method, this paper analyzes fourteen years of energy consumption data collected on an hourly basis, an open source dataset from kaggle. Moreover, the paper initiates a Long Short Term Memory (LSTM) based approach to predict the energy consumption based on the actual dataset. The empirical results demonstrate that the proposed LSTM architecture can efficiently enhance the prediction accuracy of energy consumption.\",\"PeriodicalId\":6741,\"journal\":{\"name\":\"2021 International Conference on Information Networking (ICOIN)\",\"volume\":\"136 1\",\"pages\":\"732-734\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Information Networking (ICOIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOIN50884.2021.9333968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Information Networking (ICOIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIN50884.2021.9333968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

由于依赖电力的机械的进步,电力消耗的过度增长呈指数级增长。因此,对能源消耗系统进行分析和预测,可以为未来的用电量需求提供依据,改善配电系统。鉴于现有的能源消耗预测模型存在一些问题,这些问题限制了对实际能源消耗的正确预测。因此,为了克服能源预测方法,本文分析了来自kaggle的开源数据集,以小时为单位收集的14年的能源消耗数据。此外,本文还提出了一种基于长短期记忆(LSTM)的基于实际数据集的能耗预测方法。实证结果表明,所提出的LSTM架构能够有效提高能耗预测的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis and Prediction of Hourly Energy Consumption Based on Long Short-Term Memory Neural Network
Due to the advancements of electricity dependent machinery, the excessive growth of power consumption has increased exponentially. Therefore, analysis and prediction of the energy consumption system will offer the future demand for electricity consumption and improve the power distribution system. On account of several challenges of existing energy consumption prediction models that are limiting to predict the actual energy consumption properly. Thus, to conquer the energy prediction method, this paper analyzes fourteen years of energy consumption data collected on an hourly basis, an open source dataset from kaggle. Moreover, the paper initiates a Long Short Term Memory (LSTM) based approach to predict the energy consumption based on the actual dataset. The empirical results demonstrate that the proposed LSTM architecture can efficiently enhance the prediction accuracy of energy consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Study on the Cluster-wise Regression Model for Bead Width in the Automatic GMA Welding GDFed: Dynamic Federated Learning for Heterogenous Device Using Graph Neural Network A Solution for Recovering Network Topology with Missing Links using Sparse Modeling Real-time health monitoring system design based on optical camera communication Multimedia Contents Retrieval based on 12-Mood Vector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1