{"title":"氧化铋降解甲基橙","authors":"S. Iyyapushpam, S. Nishanthi, D. Padiyan","doi":"10.1109/ICANMEET.2013.6609252","DOIUrl":null,"url":null,"abstract":"Bismuth oxide is prepared by a simple chemical route and it crystallizes in the monoclinic crystal system. The measured optical band gap value of 2.694(1) eV supported that the prepared bismuth oxide can be used as a visible light photocatalyst. The degradation property of bismuth oxide is studied using methyl orange as a model pollutant and a degradation of 85% is achieved in 4 h. The kinetics of bismuth oxide is fitted using pseudo first and second order equations.","PeriodicalId":13708,"journal":{"name":"International Conference on Advanced Nanomaterials & Emerging Engineering Technologies","volume":"69 1","pages":"249-251"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degradation of methyl orange using bismuth oxide\",\"authors\":\"S. Iyyapushpam, S. Nishanthi, D. Padiyan\",\"doi\":\"10.1109/ICANMEET.2013.6609252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bismuth oxide is prepared by a simple chemical route and it crystallizes in the monoclinic crystal system. The measured optical band gap value of 2.694(1) eV supported that the prepared bismuth oxide can be used as a visible light photocatalyst. The degradation property of bismuth oxide is studied using methyl orange as a model pollutant and a degradation of 85% is achieved in 4 h. The kinetics of bismuth oxide is fitted using pseudo first and second order equations.\",\"PeriodicalId\":13708,\"journal\":{\"name\":\"International Conference on Advanced Nanomaterials & Emerging Engineering Technologies\",\"volume\":\"69 1\",\"pages\":\"249-251\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Advanced Nanomaterials & Emerging Engineering Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICANMEET.2013.6609252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Advanced Nanomaterials & Emerging Engineering Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICANMEET.2013.6609252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bismuth oxide is prepared by a simple chemical route and it crystallizes in the monoclinic crystal system. The measured optical band gap value of 2.694(1) eV supported that the prepared bismuth oxide can be used as a visible light photocatalyst. The degradation property of bismuth oxide is studied using methyl orange as a model pollutant and a degradation of 85% is achieved in 4 h. The kinetics of bismuth oxide is fitted using pseudo first and second order equations.