一种改进的粒子群算法用于分布式搜索和集体清理

Jun Li, Zhutian Chen, Yu Liu, Y. Cai, Huaqing Min, Qing Li
{"title":"一种改进的粒子群算法用于分布式搜索和集体清理","authors":"Jun Li, Zhutian Chen, Yu Liu, Y. Cai, Huaqing Min, Qing Li","doi":"10.1109/ICAWST.2013.6765423","DOIUrl":null,"url":null,"abstract":"Distributed coordination is critical for a multi-robot system in collective cleanup task under a dynamic environment. In traditional methods, robots easily drop into premature convergence. In this paper, we propose a swarm-intelligence based algorithm to reduce the expectation time for searching targets and removing. We modify the traditional PSO algorithm with a random factor to tackle premature convergence problem, and it can achieve a significant improvement in multi-robot system. The proposed method has been implemented on self-developed simulator for searching task. The simulation results demonstrate the feasibility, robustness, and scalability of our proposed method than previous methods.","PeriodicalId":68697,"journal":{"name":"炎黄地理","volume":"29 1","pages":"137-143"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A modified particle swarm optimization algorithm for distributed search and collective cleanup\",\"authors\":\"Jun Li, Zhutian Chen, Yu Liu, Y. Cai, Huaqing Min, Qing Li\",\"doi\":\"10.1109/ICAWST.2013.6765423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed coordination is critical for a multi-robot system in collective cleanup task under a dynamic environment. In traditional methods, robots easily drop into premature convergence. In this paper, we propose a swarm-intelligence based algorithm to reduce the expectation time for searching targets and removing. We modify the traditional PSO algorithm with a random factor to tackle premature convergence problem, and it can achieve a significant improvement in multi-robot system. The proposed method has been implemented on self-developed simulator for searching task. The simulation results demonstrate the feasibility, robustness, and scalability of our proposed method than previous methods.\",\"PeriodicalId\":68697,\"journal\":{\"name\":\"炎黄地理\",\"volume\":\"29 1\",\"pages\":\"137-143\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"炎黄地理\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAWST.2013.6765423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"炎黄地理","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/ICAWST.2013.6765423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

分布式协调是多机器人系统在动态环境下完成集体清理任务的关键。在传统的方法中,机器人容易陷入过早收敛。本文提出了一种基于群体智能的算法来减少目标搜索和移除的期望时间。通过引入随机因子对传统粒子群算法进行改进,解决了粒子群算法的早熟收敛问题,在多机器人系统中实现了显著的改进。该方法已在自行开发的搜索任务模拟器上实现。仿真结果证明了该方法的可行性、鲁棒性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A modified particle swarm optimization algorithm for distributed search and collective cleanup
Distributed coordination is critical for a multi-robot system in collective cleanup task under a dynamic environment. In traditional methods, robots easily drop into premature convergence. In this paper, we propose a swarm-intelligence based algorithm to reduce the expectation time for searching targets and removing. We modify the traditional PSO algorithm with a random factor to tackle premature convergence problem, and it can achieve a significant improvement in multi-robot system. The proposed method has been implemented on self-developed simulator for searching task. The simulation results demonstrate the feasibility, robustness, and scalability of our proposed method than previous methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
784
期刊最新文献
Make decision boundary smoother by transition learning Neurophysiological evidence of the cognitive cycle and the emergence of awareness An efficient implementation of normalized cross-correlation image matching based on pyramid A hybrid recommender system based non-common items in social media "Canderoid": A mobile system to remotely monitor travelling status of the elderly with dementia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1