{"title":"实验室规模MAVeP移动原型的开发","authors":"Mohd Azri Abd Mutalib, Norsinnira Zainul Azlan","doi":"10.15282/ijame.19.3.2022.09.0769","DOIUrl":null,"url":null,"abstract":"This paper presents the development, calibration and mechanism control of lab scale Motorised Adjustable Vertical Platform (MAVeP) mobility prototype. MAVeP has been developed and equipped with mecanum wheels to allow an omnidirectional movement. The omnidirectionality, or the ability to move in any direction, without altering the direction of the MAVeP’s body, makes this type of driving useful, especially in narrow and confined areas such as inside satellite assembly, integration and test centre (AITC). Since MAVeP has been delivered at AITC and high accuracy and repeatability movement are crucial during the application, a robot prototype representing MAVeP mobility has been designed and developed. The mechanical and electrical design, including all processes and components, are selected and explained in detail. The development of the robot prototype, its parameters and calibration are also discussed. The DC motor control for separate wheels of the MAVeP mobility prototype using PID controller and the calibrations to synchronous the four wheels’ rotation are also discussed in this paper. The experimental result shows that the robot prototype is established and ready to be used in research.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"47 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Lab Scale MAVeP Mobility Prototype\",\"authors\":\"Mohd Azri Abd Mutalib, Norsinnira Zainul Azlan\",\"doi\":\"10.15282/ijame.19.3.2022.09.0769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the development, calibration and mechanism control of lab scale Motorised Adjustable Vertical Platform (MAVeP) mobility prototype. MAVeP has been developed and equipped with mecanum wheels to allow an omnidirectional movement. The omnidirectionality, or the ability to move in any direction, without altering the direction of the MAVeP’s body, makes this type of driving useful, especially in narrow and confined areas such as inside satellite assembly, integration and test centre (AITC). Since MAVeP has been delivered at AITC and high accuracy and repeatability movement are crucial during the application, a robot prototype representing MAVeP mobility has been designed and developed. The mechanical and electrical design, including all processes and components, are selected and explained in detail. The development of the robot prototype, its parameters and calibration are also discussed. The DC motor control for separate wheels of the MAVeP mobility prototype using PID controller and the calibrations to synchronous the four wheels’ rotation are also discussed in this paper. The experimental result shows that the robot prototype is established and ready to be used in research.\",\"PeriodicalId\":13935,\"journal\":{\"name\":\"International Journal of Automotive and Mechanical Engineering\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive and Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/ijame.19.3.2022.09.0769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.19.3.2022.09.0769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
This paper presents the development, calibration and mechanism control of lab scale Motorised Adjustable Vertical Platform (MAVeP) mobility prototype. MAVeP has been developed and equipped with mecanum wheels to allow an omnidirectional movement. The omnidirectionality, or the ability to move in any direction, without altering the direction of the MAVeP’s body, makes this type of driving useful, especially in narrow and confined areas such as inside satellite assembly, integration and test centre (AITC). Since MAVeP has been delivered at AITC and high accuracy and repeatability movement are crucial during the application, a robot prototype representing MAVeP mobility has been designed and developed. The mechanical and electrical design, including all processes and components, are selected and explained in detail. The development of the robot prototype, its parameters and calibration are also discussed. The DC motor control for separate wheels of the MAVeP mobility prototype using PID controller and the calibrations to synchronous the four wheels’ rotation are also discussed in this paper. The experimental result shows that the robot prototype is established and ready to be used in research.
期刊介绍:
The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.