B. Toledo-Padr'on, C. Lovis, A. Mascareno, S. Barros, J. Hern'andez, A. Sozzetti, F. Bouchy, M. Z. Osorio, R. Rebolo, S. Cristiani, F. Pepe, N. Santos, S. Sousa, H. Tabernero, J. Lillo-Box, D. Bossini, V. Adibekyan, R. Allart, M. Damasso, V. D’Odorico, P. Figueira, B. Lavie, G. Curto, A. Mehner, G. Micela, A. Modigliani, N. Nunes, E. Pall'e, M. Abreu, M. Affolter, Y. Alibert, M. Aliverti, C. Prieto, D. Alves, M. Amate, G. Ávila, V. Baldini, T. Bandy, S. Benatti, W. Benz, A. Bianco, C. Broeg, A. Cabral, G. Calderone, R. Cirami, J. Coelho, P. Conconi, I. Coretti, C. Cumani, G. Cupani, S. Deiries, H. Dekker, B. Delabre, O. Demangeon, P. D. Marcantonio, D. Ehrenreich, A. Fragoso, L. Genolet, M. Genoni, R. G. Santos, I. Hughes, O. Iwert, J. Knudstrup, M. Landoni, J. Lizon, C. Maire, A. Manescau, C. Martins, D. M'egevand, P. Molaro, M. Monteiro, M. Monteiro, M. Moschetti, E. Mueller, L. Oggioni, A. Oliveira, M. Oshagh, G. Pariani, L. Pasquini, E. Poretti, J. L. Rasilla, E. Redaelli, M. Riva, S. Tschudi, P. Sant
{"title":"K2-38行星系统的特征","authors":"B. Toledo-Padr'on, C. Lovis, A. Mascareno, S. Barros, J. Hern'andez, A. Sozzetti, F. Bouchy, M. Z. Osorio, R. Rebolo, S. Cristiani, F. Pepe, N. Santos, S. Sousa, H. Tabernero, J. Lillo-Box, D. Bossini, V. Adibekyan, R. Allart, M. Damasso, V. D’Odorico, P. Figueira, B. Lavie, G. Curto, A. Mehner, G. Micela, A. Modigliani, N. Nunes, E. Pall'e, M. Abreu, M. Affolter, Y. Alibert, M. Aliverti, C. Prieto, D. Alves, M. Amate, G. Ávila, V. Baldini, T. Bandy, S. Benatti, W. Benz, A. Bianco, C. Broeg, A. Cabral, G. Calderone, R. Cirami, J. Coelho, P. Conconi, I. Coretti, C. Cumani, G. Cupani, S. Deiries, H. Dekker, B. Delabre, O. Demangeon, P. D. Marcantonio, D. Ehrenreich, A. Fragoso, L. Genolet, M. Genoni, R. G. Santos, I. Hughes, O. Iwert, J. Knudstrup, M. Landoni, J. Lizon, C. Maire, A. Manescau, C. Martins, D. M'egevand, P. Molaro, M. Monteiro, M. Monteiro, M. Moschetti, E. Mueller, L. Oggioni, A. Oliveira, M. Oshagh, G. Pariani, L. Pasquini, E. Poretti, J. L. Rasilla, E. Redaelli, M. Riva, S. Tschudi, P. Sant","doi":"10.1051/0004-6361/202038187","DOIUrl":null,"url":null,"abstract":"We characterized the transiting planetary system orbiting the G2V star K2-38 using the new-generation echelle spectrograph ESPRESSO. We carried out a photometric analysis of the available K2 photometric light curve of this star to measure the radius of its two known planets. Using 43 ESPRESSO high-precision radial velocity measurements taken over the course of 8 months along with the 14 previously published HIRES RV measurements, we modeled the orbits of the two planets through a MCMC analysis, significantly improving their mass measurements. Using ESPRESSO spectra, we derived the stellar parameters, $T_{\\rm eff}$=5731$\\pm$66, $\\log g$=4.38$\\pm$0.11~dex, and $[Fe/H]$=0.26$\\pm$0.05~dex, and thus the mass and radius of K2-38, $M_{\\star}$=1.03 $^{+0.04}_{-0.02}$~M$_{\\oplus}$ and $R_{\\star}$=1.06 $^{+0.09}_{-0.06}$~R$_{\\oplus}$. We determine new values for the planetary properties of both planets. We characterize K2-38b as a super-Earth with $R_{\\rm P}$=1.54$\\pm$0.14~R$_{\\rm \\oplus}$ and $M_{\\rm p}$=7.3$^{+1.1}_{-1.0}$~M$_{\\oplus}$, and K2-38c as a sub-Neptune with $R_{\\rm P}$=2.29$\\pm$0.26~R$_{\\rm \\oplus}$ and $M_{\\rm p}$=8.3$^{+1.3}_{-1.3}$~M$_{\\oplus}$. We derived a mean density of $\\rho_{\\rm p}$=11.0$^{+4.1}_{-2.8}$~g cm$^{-3}$ for K2-38b and $\\rho_{\\rm p}$=3.8$^{+1.8}_{-1.1}$~g~cm$^{-3}$ for K2-38c, confirming K2-38b as one of the densest planets known to date. The best description for the composition of K2-38b comes from an iron-rich Mercury-like model, while K2-38c is better described by a rocky model with a H2 envelope. The maximum collision stripping boundary shows how giant impacts could be the cause for the high density of K2-38b. The irradiation received by each planet places them on opposite sides of the radius valley. We find evidence of a long-period signal in the radial velocity time-series whose origin could be linked to a 0.25-3~M$_{\\rm J}$ planet or stellar activity.","PeriodicalId":8428,"journal":{"name":"arXiv: Earth and Planetary Astrophysics","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Characterization of the K2-38 planetary system\",\"authors\":\"B. Toledo-Padr'on, C. Lovis, A. Mascareno, S. Barros, J. Hern'andez, A. Sozzetti, F. Bouchy, M. Z. Osorio, R. Rebolo, S. Cristiani, F. Pepe, N. Santos, S. Sousa, H. Tabernero, J. Lillo-Box, D. Bossini, V. Adibekyan, R. Allart, M. Damasso, V. D’Odorico, P. Figueira, B. Lavie, G. Curto, A. Mehner, G. Micela, A. Modigliani, N. Nunes, E. Pall'e, M. Abreu, M. Affolter, Y. Alibert, M. Aliverti, C. Prieto, D. Alves, M. Amate, G. Ávila, V. Baldini, T. Bandy, S. Benatti, W. Benz, A. Bianco, C. Broeg, A. Cabral, G. Calderone, R. Cirami, J. Coelho, P. Conconi, I. Coretti, C. Cumani, G. Cupani, S. Deiries, H. Dekker, B. Delabre, O. Demangeon, P. D. Marcantonio, D. Ehrenreich, A. Fragoso, L. Genolet, M. Genoni, R. G. Santos, I. Hughes, O. Iwert, J. Knudstrup, M. Landoni, J. Lizon, C. Maire, A. Manescau, C. Martins, D. M'egevand, P. Molaro, M. Monteiro, M. Monteiro, M. Moschetti, E. Mueller, L. Oggioni, A. Oliveira, M. Oshagh, G. Pariani, L. Pasquini, E. Poretti, J. L. Rasilla, E. Redaelli, M. Riva, S. Tschudi, P. Sant\",\"doi\":\"10.1051/0004-6361/202038187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We characterized the transiting planetary system orbiting the G2V star K2-38 using the new-generation echelle spectrograph ESPRESSO. We carried out a photometric analysis of the available K2 photometric light curve of this star to measure the radius of its two known planets. Using 43 ESPRESSO high-precision radial velocity measurements taken over the course of 8 months along with the 14 previously published HIRES RV measurements, we modeled the orbits of the two planets through a MCMC analysis, significantly improving their mass measurements. Using ESPRESSO spectra, we derived the stellar parameters, $T_{\\\\rm eff}$=5731$\\\\pm$66, $\\\\log g$=4.38$\\\\pm$0.11~dex, and $[Fe/H]$=0.26$\\\\pm$0.05~dex, and thus the mass and radius of K2-38, $M_{\\\\star}$=1.03 $^{+0.04}_{-0.02}$~M$_{\\\\oplus}$ and $R_{\\\\star}$=1.06 $^{+0.09}_{-0.06}$~R$_{\\\\oplus}$. We determine new values for the planetary properties of both planets. We characterize K2-38b as a super-Earth with $R_{\\\\rm P}$=1.54$\\\\pm$0.14~R$_{\\\\rm \\\\oplus}$ and $M_{\\\\rm p}$=7.3$^{+1.1}_{-1.0}$~M$_{\\\\oplus}$, and K2-38c as a sub-Neptune with $R_{\\\\rm P}$=2.29$\\\\pm$0.26~R$_{\\\\rm \\\\oplus}$ and $M_{\\\\rm p}$=8.3$^{+1.3}_{-1.3}$~M$_{\\\\oplus}$. We derived a mean density of $\\\\rho_{\\\\rm p}$=11.0$^{+4.1}_{-2.8}$~g cm$^{-3}$ for K2-38b and $\\\\rho_{\\\\rm p}$=3.8$^{+1.8}_{-1.1}$~g~cm$^{-3}$ for K2-38c, confirming K2-38b as one of the densest planets known to date. The best description for the composition of K2-38b comes from an iron-rich Mercury-like model, while K2-38c is better described by a rocky model with a H2 envelope. The maximum collision stripping boundary shows how giant impacts could be the cause for the high density of K2-38b. The irradiation received by each planet places them on opposite sides of the radius valley. We find evidence of a long-period signal in the radial velocity time-series whose origin could be linked to a 0.25-3~M$_{\\\\rm J}$ planet or stellar activity.\",\"PeriodicalId\":8428,\"journal\":{\"name\":\"arXiv: Earth and Planetary Astrophysics\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Earth and Planetary Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/0004-6361/202038187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Earth and Planetary Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/0004-6361/202038187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
摘要
我们利用新一代的ESPRESSO光谱仪对G2V恒星K2-38的凌日行星系进行了表征。我们对这颗恒星的K2光度曲线进行了光度分析,以测量其两颗已知行星的半径。利用在8个月的时间里进行的43次ESPRESSO高精度径向速度测量,以及之前发表的14次HIRES RV测量,我们通过MCMC分析模拟了这两颗行星的轨道,显著改善了它们的质量测量。利用ESPRESSO光谱,我们推导出了K2-38的恒星参数$T_{\rm eff}$ =5731 $\pm$ 66, $\log g$ =4.38 $\pm$ 0.11 index, $[Fe/H]$ =0.26 $\pm$ 0.05 index,从而得到了K2-38的质量和半径$M_{\star}$ =1.03 $^{+0.04}_{-0.02}$ M $_{\oplus}$和$R_{\star}$ =1.06 $^{+0.09}_{-0.06}$ R $_{\oplus}$。我们确定了两颗行星的行星属性的新值。我们认为K2-38b是一个超级地球,$R_{\rm P}$ =1.54 $\pm$ 0.14 R $_{\rm \oplus}$和$M_{\rm p}$ =7.3 $^{+1.1}_{-1.0}$ M $_{\oplus}$, K2-38c是一个亚海王星,$R_{\rm P}$ =2.29 $\pm$ 0.26 R $_{\rm \oplus}$和$M_{\rm p}$ =8.3 $^{+1.3}_{-1.3}$ M $_{\oplus}$。我们得出K2-38b的平均密度为$\rho_{\rm p}$ =11.0 $^{+4.1}_{-2.8}$ g cm $^{-3}$, K2-38c的平均密度为$\rho_{\rm p}$ =3.8 $^{+1.8}_{-1.1}$ g cm $^{-3}$,证实了K2-38b是迄今为止已知密度最大的行星之一。对K2-38b的组成最好的描述来自一个富含铁的类水星模型,而K2-38c则更适合用一个带有H2包层的岩石模型来描述。最大碰撞剥离边界显示了巨大的撞击可能是K2-38b高密度的原因。每颗行星受到的辐射使它们位于半径谷的两侧。我们在径向速度时间序列中发现了一个长周期信号的证据,其起源可能与0.25-3 M $_{\rm J}$行星或恒星活动有关。
We characterized the transiting planetary system orbiting the G2V star K2-38 using the new-generation echelle spectrograph ESPRESSO. We carried out a photometric analysis of the available K2 photometric light curve of this star to measure the radius of its two known planets. Using 43 ESPRESSO high-precision radial velocity measurements taken over the course of 8 months along with the 14 previously published HIRES RV measurements, we modeled the orbits of the two planets through a MCMC analysis, significantly improving their mass measurements. Using ESPRESSO spectra, we derived the stellar parameters, $T_{\rm eff}$=5731$\pm$66, $\log g$=4.38$\pm$0.11~dex, and $[Fe/H]$=0.26$\pm$0.05~dex, and thus the mass and radius of K2-38, $M_{\star}$=1.03 $^{+0.04}_{-0.02}$~M$_{\oplus}$ and $R_{\star}$=1.06 $^{+0.09}_{-0.06}$~R$_{\oplus}$. We determine new values for the planetary properties of both planets. We characterize K2-38b as a super-Earth with $R_{\rm P}$=1.54$\pm$0.14~R$_{\rm \oplus}$ and $M_{\rm p}$=7.3$^{+1.1}_{-1.0}$~M$_{\oplus}$, and K2-38c as a sub-Neptune with $R_{\rm P}$=2.29$\pm$0.26~R$_{\rm \oplus}$ and $M_{\rm p}$=8.3$^{+1.3}_{-1.3}$~M$_{\oplus}$. We derived a mean density of $\rho_{\rm p}$=11.0$^{+4.1}_{-2.8}$~g cm$^{-3}$ for K2-38b and $\rho_{\rm p}$=3.8$^{+1.8}_{-1.1}$~g~cm$^{-3}$ for K2-38c, confirming K2-38b as one of the densest planets known to date. The best description for the composition of K2-38b comes from an iron-rich Mercury-like model, while K2-38c is better described by a rocky model with a H2 envelope. The maximum collision stripping boundary shows how giant impacts could be the cause for the high density of K2-38b. The irradiation received by each planet places them on opposite sides of the radius valley. We find evidence of a long-period signal in the radial velocity time-series whose origin could be linked to a 0.25-3~M$_{\rm J}$ planet or stellar activity.