用多普勒天气雷达资料识别大风天气

Jinliang Zhou, M. Wei, Tao Wu, Nan Li
{"title":"用多普勒天气雷达资料识别大风天气","authors":"Jinliang Zhou, M. Wei, Tao Wu, Nan Li","doi":"10.1109/RSETE.2011.5965731","DOIUrl":null,"url":null,"abstract":"With high temporal and spatial resolution, Doppler weather radars are important means for revealing structures and revolution of meso-micro scale weather processes. This article uses reflectivity characteristics to identify convective gale weather. 6 promising identification parameters are proposed (CR, VIL, DVIL, SWP, DCRH and SPEED), and an automated identification algorithm for convective gale is established based on fuzzy logic principles. 6 typical cases are used to obtain probability distribution characters based on the statistics of volume scan data, and then it is determined that CR, VIL, DVIL and SWP that have more concentrated probability densities are used as the input variables of the fuzzy logic technique for the identification of the convective gale. According to the statistics, these parameters can effectively identify convective gale. The algorithm identifies 150 from 174 gale wind events in 6 weather processes, with a POD probability 86.21%.","PeriodicalId":6296,"journal":{"name":"2011 International Conference on Remote Sensing, Environment and Transportation Engineering","volume":"27 1","pages":"6033-6036"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of gale weather with doppler weather radar data\",\"authors\":\"Jinliang Zhou, M. Wei, Tao Wu, Nan Li\",\"doi\":\"10.1109/RSETE.2011.5965731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With high temporal and spatial resolution, Doppler weather radars are important means for revealing structures and revolution of meso-micro scale weather processes. This article uses reflectivity characteristics to identify convective gale weather. 6 promising identification parameters are proposed (CR, VIL, DVIL, SWP, DCRH and SPEED), and an automated identification algorithm for convective gale is established based on fuzzy logic principles. 6 typical cases are used to obtain probability distribution characters based on the statistics of volume scan data, and then it is determined that CR, VIL, DVIL and SWP that have more concentrated probability densities are used as the input variables of the fuzzy logic technique for the identification of the convective gale. According to the statistics, these parameters can effectively identify convective gale. The algorithm identifies 150 from 174 gale wind events in 6 weather processes, with a POD probability 86.21%.\",\"PeriodicalId\":6296,\"journal\":{\"name\":\"2011 International Conference on Remote Sensing, Environment and Transportation Engineering\",\"volume\":\"27 1\",\"pages\":\"6033-6036\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Remote Sensing, Environment and Transportation Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RSETE.2011.5965731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Remote Sensing, Environment and Transportation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSETE.2011.5965731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多普勒天气雷达具有很高的时空分辨率,是揭示中微尺度天气过程结构和演变的重要手段。本文利用反射率特征来识别对流大风天气。提出了6个有前途的识别参数(CR、VIL、DVIL、SWP、DCRH和SPEED),建立了基于模糊逻辑原理的对流大风自动识别算法。利用6个典型案例,在体扫描数据统计的基础上得到概率分布特征,确定概率密度较为集中的CR、VIL、DVIL和SWP作为模糊逻辑技术识别对流大风的输入变量。经统计,这些参数能有效识别对流大风。该算法从6个天气过程的174个大风事件中识别出150个,POD概率为86.21%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of gale weather with doppler weather radar data
With high temporal and spatial resolution, Doppler weather radars are important means for revealing structures and revolution of meso-micro scale weather processes. This article uses reflectivity characteristics to identify convective gale weather. 6 promising identification parameters are proposed (CR, VIL, DVIL, SWP, DCRH and SPEED), and an automated identification algorithm for convective gale is established based on fuzzy logic principles. 6 typical cases are used to obtain probability distribution characters based on the statistics of volume scan data, and then it is determined that CR, VIL, DVIL and SWP that have more concentrated probability densities are used as the input variables of the fuzzy logic technique for the identification of the convective gale. According to the statistics, these parameters can effectively identify convective gale. The algorithm identifies 150 from 174 gale wind events in 6 weather processes, with a POD probability 86.21%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of the preheating temperature and polarization treatment on the electrical properties of 0–3 PZT/IPN piezoelectric composites Biodistribution of curcumin and its derivatives new aspects for curcumin administration Characterization of microbial community structure of anaerobic baffled reactor-integrated oxidation ditch-biological aerated filter for landfill leachate treatment Identification of gale weather with doppler weather radar data Domestication of strain SYSHHJ1 and its biodegradation of cyclohexane
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1