激光诱导击穿光谱法测定牛堆肥中磷含量

A. Lencina, Gustavo Romagnoli, Andrea Alonso, N. Ramos, C. D'Angelo, Lina Lett, S. Mestelan
{"title":"激光诱导击穿光谱法测定牛堆肥中磷含量","authors":"A. Lencina, Gustavo Romagnoli, Andrea Alonso, N. Ramos, C. D'Angelo, Lina Lett, S. Mestelan","doi":"10.30486/IJROWA.2021.1917918.1178","DOIUrl":null,"url":null,"abstract":"Purpose Agronomic and environmental reasons force farmers to know the total P concentration of composted cattle manure. Laser-Induced Breakdown Spectroscopy seems proper to obtain such information. For logistic reasons (carriage, storage, field application, etc.), a dry matter characterization is also needed.Method Thirty samples of feedlot compost at different stages of stability and maturity were studied. Samples were dried at 50°C for dry matter characterization. As a reference method to determine total P concentration, wet digestion and colorimetry were employed. The area of the P I line emission obtained by laser-induced ablation of the samples was measured to estimate the total P concentration. Randomized calibrations through a modified version of the Kennard-Stone algorithm based on the Mahalanobis distance were performed.Results Dry matter varied from 40% to 90%, and no pattern was found related to compost origin, maturity, or stability. The total P concentration of the studied compost ranged from 1800 ppm up to 11200 ppm. Almost 80% of the calibration fittings have an R2 ≥ 0.895. The mean validation error was less than 22% for about 80% of the calibrations, with a mean prediction error bound to 40%. Discarding outliers, the errors were reduced to 19% and 30%, respectively.Conclusion Water content must be considered in addition to other characterizations due to logistic implications. Calibrations with a 30 percent of prediction error were achieved, which seems enough as a first approximation to predict the total P content in compost for utilization in farms to recycle nutrients.","PeriodicalId":14373,"journal":{"name":"International Journal Of Recycling of Organic Waste in Agriculture","volume":"30 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser-induced breakdown spectroscopy applied to cattle compost for phosphorus quantification\",\"authors\":\"A. Lencina, Gustavo Romagnoli, Andrea Alonso, N. Ramos, C. D'Angelo, Lina Lett, S. Mestelan\",\"doi\":\"10.30486/IJROWA.2021.1917918.1178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose Agronomic and environmental reasons force farmers to know the total P concentration of composted cattle manure. Laser-Induced Breakdown Spectroscopy seems proper to obtain such information. For logistic reasons (carriage, storage, field application, etc.), a dry matter characterization is also needed.Method Thirty samples of feedlot compost at different stages of stability and maturity were studied. Samples were dried at 50°C for dry matter characterization. As a reference method to determine total P concentration, wet digestion and colorimetry were employed. The area of the P I line emission obtained by laser-induced ablation of the samples was measured to estimate the total P concentration. Randomized calibrations through a modified version of the Kennard-Stone algorithm based on the Mahalanobis distance were performed.Results Dry matter varied from 40% to 90%, and no pattern was found related to compost origin, maturity, or stability. The total P concentration of the studied compost ranged from 1800 ppm up to 11200 ppm. Almost 80% of the calibration fittings have an R2 ≥ 0.895. The mean validation error was less than 22% for about 80% of the calibrations, with a mean prediction error bound to 40%. Discarding outliers, the errors were reduced to 19% and 30%, respectively.Conclusion Water content must be considered in addition to other characterizations due to logistic implications. Calibrations with a 30 percent of prediction error were achieved, which seems enough as a first approximation to predict the total P content in compost for utilization in farms to recycle nutrients.\",\"PeriodicalId\":14373,\"journal\":{\"name\":\"International Journal Of Recycling of Organic Waste in Agriculture\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal Of Recycling of Organic Waste in Agriculture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30486/IJROWA.2021.1917918.1178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal Of Recycling of Organic Waste in Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30486/IJROWA.2021.1917918.1178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

目的农艺和环境因素迫使农民了解堆肥牛粪的总磷浓度。激光诱导击穿光谱学似乎是获得这类信息的合适方法。出于物流原因(运输、储存、现场应用等),还需要干物质表征。方法对30份不同稳定性和成熟期的饲养场堆肥样品进行研究。样品在50°C下干燥以进行干物质表征。采用湿消解法和比色法测定总磷浓度。通过测量激光诱导烧蚀样品得到的P - I线发射面积来估计总P浓度。通过基于马氏距离的Kennard-Stone算法的改进版本进行随机校准。结果干物质在40% ~ 90%之间变化,与堆肥来源、成熟度和稳定性没有关系。所研究的堆肥的总磷浓度从1800 ppm到11200 ppm不等。几乎80%的校准配件的R2≥0.895。约80%的校准平均验证误差小于22%,平均预测误差约为40%。剔除异常值后,误差分别降至19%和30%。结论:由于逻辑关系,除了其他特征外,还必须考虑水分含量。预测误差达到30%的校准,这似乎足以作为预测堆肥中总磷含量的第一个近似值,以供农场利用以回收养分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Laser-induced breakdown spectroscopy applied to cattle compost for phosphorus quantification
Purpose Agronomic and environmental reasons force farmers to know the total P concentration of composted cattle manure. Laser-Induced Breakdown Spectroscopy seems proper to obtain such information. For logistic reasons (carriage, storage, field application, etc.), a dry matter characterization is also needed.Method Thirty samples of feedlot compost at different stages of stability and maturity were studied. Samples were dried at 50°C for dry matter characterization. As a reference method to determine total P concentration, wet digestion and colorimetry were employed. The area of the P I line emission obtained by laser-induced ablation of the samples was measured to estimate the total P concentration. Randomized calibrations through a modified version of the Kennard-Stone algorithm based on the Mahalanobis distance were performed.Results Dry matter varied from 40% to 90%, and no pattern was found related to compost origin, maturity, or stability. The total P concentration of the studied compost ranged from 1800 ppm up to 11200 ppm. Almost 80% of the calibration fittings have an R2 ≥ 0.895. The mean validation error was less than 22% for about 80% of the calibrations, with a mean prediction error bound to 40%. Discarding outliers, the errors were reduced to 19% and 30%, respectively.Conclusion Water content must be considered in addition to other characterizations due to logistic implications. Calibrations with a 30 percent of prediction error were achieved, which seems enough as a first approximation to predict the total P content in compost for utilization in farms to recycle nutrients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
26.70%
发文量
0
审稿时长
13 weeks
期刊介绍: The International Journal of Recycling of Organic Waste in Agriculture is an open access journal that publishes high-quality solicited and unsolicited articles, in all areas of Recycling of organic waste including: -Solid waste reuse in agriculture -Waste water reuse in agriculture -Utilization of organic wastes: composting -Ways to reduce, reuse and recycle organic waste -Social and economic impact of reduction, reuse and recycling of organic waste in agriculture -Methods to raise the public awareness of recycling and reuse of organic waste in agriculture -Organic waste utilization in animal and poultry nutrition -Urban food waste composting
期刊最新文献
Influence of sawdust biochar application on the growth, morphological characters and yield of four varieties of sesame ( Sesamum indicum L.) Biochar as a waste management strategy for cadmium contaminated cocoa pod husk residues Efficacy of vermicompost amended and bacterial diversity on plant growth and pathogen control Effects of fertigation with raw sewage on the vegetative development of maize and beans Municipal solid waste compost and its derivatives, a suitable alternative to peat moss in the growth of Dracaena marginata tricolor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1