卷积神经网络在地震图像断层局部捕获检测中的比较

A. Lapteva, G. Loginov, A. Duchkov, S. Alyamkin
{"title":"卷积神经网络在地震图像断层局部捕获检测中的比较","authors":"A. Lapteva, G. Loginov, A. Duchkov, S. Alyamkin","doi":"10.3997/2214-4609.201901400","DOIUrl":null,"url":null,"abstract":"Summary Due to the large volumes of seismic in the industry, there is a constant effort to develop automatic or semi-automatic tools for picking horizons, faults etc. The variety of convolution neural networks proposed for automatic interpretation of seismic images, especially for faults detection. In this paper, we test different CNN models for faults detection and derive the key neural network parameters that influence on the faults localization. We aim to derive the CNN parameters, that allows to detect thin area of the fault and balanced detection of the unmarked faults. We provide the experiments on the open F3 Northen Block dataset, which is popular for benchmarking of the machine learning solutions in seismic interpretation. The best of the tested models allows to highlight the unmarked faults. The accuracy of this model for test and validation dataset is 0.97/0.96, precision, recall and f1 score for faults and background classes are 0.55/0.87, 1.00/0.98, 0.68/0.99, the Jaccard similarity score is 0.94.","PeriodicalId":6840,"journal":{"name":"81st EAGE Conference and Exhibition 2019","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Comparison of Convolution Neural Networkы for Localized Capturing Detection of Faults on Seismic Images\",\"authors\":\"A. Lapteva, G. Loginov, A. Duchkov, S. Alyamkin\",\"doi\":\"10.3997/2214-4609.201901400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Due to the large volumes of seismic in the industry, there is a constant effort to develop automatic or semi-automatic tools for picking horizons, faults etc. The variety of convolution neural networks proposed for automatic interpretation of seismic images, especially for faults detection. In this paper, we test different CNN models for faults detection and derive the key neural network parameters that influence on the faults localization. We aim to derive the CNN parameters, that allows to detect thin area of the fault and balanced detection of the unmarked faults. We provide the experiments on the open F3 Northen Block dataset, which is popular for benchmarking of the machine learning solutions in seismic interpretation. The best of the tested models allows to highlight the unmarked faults. The accuracy of this model for test and validation dataset is 0.97/0.96, precision, recall and f1 score for faults and background classes are 0.55/0.87, 1.00/0.98, 0.68/0.99, the Jaccard similarity score is 0.94.\",\"PeriodicalId\":6840,\"journal\":{\"name\":\"81st EAGE Conference and Exhibition 2019\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"81st EAGE Conference and Exhibition 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201901400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"81st EAGE Conference and Exhibition 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201901400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于行业中地震数据量很大,人们一直在努力开发自动或半自动的工具来采集层位、断层等。各种卷积神经网络被提出用于地震图像的自动解释,特别是断层检测。在本文中,我们测试了不同的CNN模型用于故障检测,并得出了影响故障定位的关键神经网络参数。我们的目标是推导出CNN参数,允许检测故障的薄区域和平衡检测未标记的故障。我们在开放的F3 north Block数据集上进行了实验,该数据集在地震解释中的机器学习解决方案的基准测试中很受欢迎。经过测试的最好的模型可以突出显示未标记的错误。该模型对测试和验证数据集的准确率为0.97/0.96,对故障和背景类的精密度、召回率和f1得分分别为0.55/0.87、1.00/0.98、0.68/0.99,Jaccard相似度得分为0.94。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Comparison of Convolution Neural Networkы for Localized Capturing Detection of Faults on Seismic Images
Summary Due to the large volumes of seismic in the industry, there is a constant effort to develop automatic or semi-automatic tools for picking horizons, faults etc. The variety of convolution neural networks proposed for automatic interpretation of seismic images, especially for faults detection. In this paper, we test different CNN models for faults detection and derive the key neural network parameters that influence on the faults localization. We aim to derive the CNN parameters, that allows to detect thin area of the fault and balanced detection of the unmarked faults. We provide the experiments on the open F3 Northen Block dataset, which is popular for benchmarking of the machine learning solutions in seismic interpretation. The best of the tested models allows to highlight the unmarked faults. The accuracy of this model for test and validation dataset is 0.97/0.96, precision, recall and f1 score for faults and background classes are 0.55/0.87, 1.00/0.98, 0.68/0.99, the Jaccard similarity score is 0.94.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Recurrent Architectures for Seismic Tomography UK Geoenergy Observatories: New Facilities to Understand the Future Energy Challenges A New Approach for Determining Optimum Location of Injection Wells Using an Efficient Dynamic Based Method Microseismic Magnitudes: Challenges in Determining the Correct Moment and Operating Regulatory Frameworks Machine-Learning in Oil and Gas Exploration: A New Approach to Geological Risk Assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1