{"title":"信息-物理-人系统生成设计研究问题","authors":"D. Rosen, C. Choi","doi":"10.1115/1.4062598","DOIUrl":null,"url":null,"abstract":"\n Cyber-physical-human systems (CPHS) are smart products and systems that offer services to their customers, supported by back-end systems (e.g., information, finance) and other infrastructure. In this paper, initial concepts and research issues are presented regarding the computational design of CPHS, CPHS families, and generations of these families. Significant research gaps are identified that should drive future research directions. The approach proposed here is a novel combination of generative and configuration design methods with product family design methodology and an explicit consideration of usability across all human stakeholders. With this approach, a wide variety of CPHS, including customized CPHS, can be developed quickly by sharing technologies and modules across CPHS family members, while ensuring user acceptance. The domain of assistive technology is used in this paper to provide an example field of practice that could benefit from a systematic design methodology and opportunities to leverage technology solutions.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":"25 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research Issues in the Generative Design of Cyber-Physical-Human Systems\",\"authors\":\"D. Rosen, C. Choi\",\"doi\":\"10.1115/1.4062598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Cyber-physical-human systems (CPHS) are smart products and systems that offer services to their customers, supported by back-end systems (e.g., information, finance) and other infrastructure. In this paper, initial concepts and research issues are presented regarding the computational design of CPHS, CPHS families, and generations of these families. Significant research gaps are identified that should drive future research directions. The approach proposed here is a novel combination of generative and configuration design methods with product family design methodology and an explicit consideration of usability across all human stakeholders. With this approach, a wide variety of CPHS, including customized CPHS, can be developed quickly by sharing technologies and modules across CPHS family members, while ensuring user acceptance. The domain of assistive technology is used in this paper to provide an example field of practice that could benefit from a systematic design methodology and opportunities to leverage technology solutions.\",\"PeriodicalId\":54856,\"journal\":{\"name\":\"Journal of Computing and Information Science in Engineering\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computing and Information Science in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062598\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062598","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Research Issues in the Generative Design of Cyber-Physical-Human Systems
Cyber-physical-human systems (CPHS) are smart products and systems that offer services to their customers, supported by back-end systems (e.g., information, finance) and other infrastructure. In this paper, initial concepts and research issues are presented regarding the computational design of CPHS, CPHS families, and generations of these families. Significant research gaps are identified that should drive future research directions. The approach proposed here is a novel combination of generative and configuration design methods with product family design methodology and an explicit consideration of usability across all human stakeholders. With this approach, a wide variety of CPHS, including customized CPHS, can be developed quickly by sharing technologies and modules across CPHS family members, while ensuring user acceptance. The domain of assistive technology is used in this paper to provide an example field of practice that could benefit from a systematic design methodology and opportunities to leverage technology solutions.
期刊介绍:
The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications.
Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping