中国主要城市新冠肺炎疫情动态特征分析

IF 2.7 Q1 GEOGRAPHY Annals of GIS Pub Date : 2022-01-16 DOI:10.1080/19475683.2022.2026468
Ci Song, T. Pei, Xi Wang, Yaxi Liu, Jia Ma, Daojing Zhou
{"title":"中国主要城市新冠肺炎疫情动态特征分析","authors":"Ci Song, T. Pei, Xi Wang, Yaxi Liu, Jia Ma, Daojing Zhou","doi":"10.1080/19475683.2022.2026468","DOIUrl":null,"url":null,"abstract":"ABSTRACT The novel coronavirus disease of 2019 (COVID-19) first appeared in Wuhan and subsequently spread rapidly in cities and provinces across the country and all over the world. In order to effectively control the spread of the epidemic in different areas, zonal management and endemic prevention and control policies should be implemented according to local epidemic situations. This study proposes a time-series clustering method to discover dynamic characteristics of the COVID-19 epidemic by categorizing the epidemic situations in China’s major cities into groups based on daily reported confirmed cases and analysing the driving factors of the city background conditions for each category. Our results show that according to the dynamic patterns of the COVID-19 epidemic there are eight types of epidemic situations, including extreme outbreak areas, large spread areas, potential resurged areas, middle spread areas, controlled outbreak areas, limited growth areas, delayed outbreak areas, and lag report areas. These dynamic patterns are mainly related to the city background conditions, such as population flow, local resident number, government emergency response capability, and medical resource conditions. Based on our results, different endemic prevention and control measures are recommended for containing the COVID-19 epidemic in cities with different types of epidemic situations.","PeriodicalId":46270,"journal":{"name":"Annals of GIS","volume":"14 1","pages":"445 - 456"},"PeriodicalIF":2.7000,"publicationDate":"2022-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamic characteristics of the COVID-19 epidemic in China’s major cities\",\"authors\":\"Ci Song, T. Pei, Xi Wang, Yaxi Liu, Jia Ma, Daojing Zhou\",\"doi\":\"10.1080/19475683.2022.2026468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The novel coronavirus disease of 2019 (COVID-19) first appeared in Wuhan and subsequently spread rapidly in cities and provinces across the country and all over the world. In order to effectively control the spread of the epidemic in different areas, zonal management and endemic prevention and control policies should be implemented according to local epidemic situations. This study proposes a time-series clustering method to discover dynamic characteristics of the COVID-19 epidemic by categorizing the epidemic situations in China’s major cities into groups based on daily reported confirmed cases and analysing the driving factors of the city background conditions for each category. Our results show that according to the dynamic patterns of the COVID-19 epidemic there are eight types of epidemic situations, including extreme outbreak areas, large spread areas, potential resurged areas, middle spread areas, controlled outbreak areas, limited growth areas, delayed outbreak areas, and lag report areas. These dynamic patterns are mainly related to the city background conditions, such as population flow, local resident number, government emergency response capability, and medical resource conditions. Based on our results, different endemic prevention and control measures are recommended for containing the COVID-19 epidemic in cities with different types of epidemic situations.\",\"PeriodicalId\":46270,\"journal\":{\"name\":\"Annals of GIS\",\"volume\":\"14 1\",\"pages\":\"445 - 456\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of GIS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19475683.2022.2026468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of GIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19475683.2022.2026468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 1

摘要

2019年新型冠状病毒病(COVID-19)首先在武汉出现,随后在全国各省市乃至全球迅速蔓延。为有效控制疫情在不同地区的传播,应根据当地疫情情况实施分区管理和地方病防控政策。本研究提出了一种时间序列聚类方法,通过每日报告确诊病例对中国主要城市的疫情进行分组,并分析每一类城市背景条件的驱动因素,发现新冠肺炎疫情的动态特征。结果表明,根据新冠肺炎疫情的动态格局,可划分为极端疫区、大面积疫区、潜在复燃区、中度疫区、控制疫区、有限增长区、延迟疫区、滞后报告区等8种疫情类型。这些动态模式主要与城市背景条件有关,如人口流动、当地居民数量、政府应急响应能力、医疗资源状况等。根据研究结果,针对不同疫情类型的城市,建议采取不同的疫情防控措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic characteristics of the COVID-19 epidemic in China’s major cities
ABSTRACT The novel coronavirus disease of 2019 (COVID-19) first appeared in Wuhan and subsequently spread rapidly in cities and provinces across the country and all over the world. In order to effectively control the spread of the epidemic in different areas, zonal management and endemic prevention and control policies should be implemented according to local epidemic situations. This study proposes a time-series clustering method to discover dynamic characteristics of the COVID-19 epidemic by categorizing the epidemic situations in China’s major cities into groups based on daily reported confirmed cases and analysing the driving factors of the city background conditions for each category. Our results show that according to the dynamic patterns of the COVID-19 epidemic there are eight types of epidemic situations, including extreme outbreak areas, large spread areas, potential resurged areas, middle spread areas, controlled outbreak areas, limited growth areas, delayed outbreak areas, and lag report areas. These dynamic patterns are mainly related to the city background conditions, such as population flow, local resident number, government emergency response capability, and medical resource conditions. Based on our results, different endemic prevention and control measures are recommended for containing the COVID-19 epidemic in cities with different types of epidemic situations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of GIS
Annals of GIS Multiple-
CiteScore
8.30
自引率
2.00%
发文量
31
期刊最新文献
Zero watermarking algorithm for BIM data based on distance partitioning and local feature Controlling for spatial confounding and spatial interference in causal inference: modelling insights from a computational experiment Application of GIS and fuzzy sets to small-scale site suitability assessment for extensive brackish water aquaculture Revealing intra-urban hierarchical spatial structure through representation learning by combining road network abstraction model and taxi trajectory data The time- and distance-decay effects of hurricane relevancy on social media: an empirical study of three hurricanes in the United States
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1