{"title":"PZT-5A和PZT-5H双晶非线性电弹性和耗散参数的建模和识别:一种动力系统方法","authors":"S. Leadenham, B. Ferri, A. Erturk","doi":"10.1117/12.2084455","DOIUrl":null,"url":null,"abstract":"Electroelastic and dissipative nonlinearities of commonly used soft piezoelectrics (PZT-5A and PZT-5H) are pronounced in various engineering applications such as actuation, sensing, vibration control, and most recently, in energy harvesting from dynamical systems. The present work investigates the nonlinear nonconservative dynamic behavior of bimorph piezoelectric cantilevers under low-to-high excitation levels with a focus on most popular soft piezoceramics: PZT-5A and PZT-5H. A unified mathematical framework we recently developed is analyzed by using the method of harmonic balance to identify and validate nonlinear system parameters based on a set of rigorous experiments for different samples.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2015-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Modeling and identification of nonlinear electroelastic and dissipative parameters for PZT-5A and PZT-5H bimorphs: a dynamical systems approach\",\"authors\":\"S. Leadenham, B. Ferri, A. Erturk\",\"doi\":\"10.1117/12.2084455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electroelastic and dissipative nonlinearities of commonly used soft piezoelectrics (PZT-5A and PZT-5H) are pronounced in various engineering applications such as actuation, sensing, vibration control, and most recently, in energy harvesting from dynamical systems. The present work investigates the nonlinear nonconservative dynamic behavior of bimorph piezoelectric cantilevers under low-to-high excitation levels with a focus on most popular soft piezoceramics: PZT-5A and PZT-5H. A unified mathematical framework we recently developed is analyzed by using the method of harmonic balance to identify and validate nonlinear system parameters based on a set of rigorous experiments for different samples.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2015-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2084455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/12.2084455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Modeling and identification of nonlinear electroelastic and dissipative parameters for PZT-5A and PZT-5H bimorphs: a dynamical systems approach
Electroelastic and dissipative nonlinearities of commonly used soft piezoelectrics (PZT-5A and PZT-5H) are pronounced in various engineering applications such as actuation, sensing, vibration control, and most recently, in energy harvesting from dynamical systems. The present work investigates the nonlinear nonconservative dynamic behavior of bimorph piezoelectric cantilevers under low-to-high excitation levels with a focus on most popular soft piezoceramics: PZT-5A and PZT-5H. A unified mathematical framework we recently developed is analyzed by using the method of harmonic balance to identify and validate nonlinear system parameters based on a set of rigorous experiments for different samples.