百里香:通过活动感知改善智能手机提示时间

S. Aminikhanghahi, Ramin Fallahzadeh, M. Sawyer, D. Cook, L. Holder
{"title":"百里香:通过活动感知改善智能手机提示时间","authors":"S. Aminikhanghahi, Ramin Fallahzadeh, M. Sawyer, D. Cook, L. Holder","doi":"10.1109/ICMLA.2017.0-141","DOIUrl":null,"url":null,"abstract":"Smartphone prompts and notifications are popular because they provide users with timely and important information. However, they can also be an annoyance if they pop up at inopportune times and interrupt important tasks. In this paper, we introduce Thyme, an intelligent notification front end that uses activity recognition and machine learning to identify the best times to prompt smartphone users. We evaluate the performance of an activity-aware prompting approach based on 47 participants with fixed time and Thyme-based prompts. Our results show that responsiveness improves from 12.8% to 93.2% using this intelligent approach to the timing of smartphone-based prompts.","PeriodicalId":6636,"journal":{"name":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"87 1","pages":"315-322"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Thyme: Improving Smartphone Prompt Timing Through Activity Awareness\",\"authors\":\"S. Aminikhanghahi, Ramin Fallahzadeh, M. Sawyer, D. Cook, L. Holder\",\"doi\":\"10.1109/ICMLA.2017.0-141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smartphone prompts and notifications are popular because they provide users with timely and important information. However, they can also be an annoyance if they pop up at inopportune times and interrupt important tasks. In this paper, we introduce Thyme, an intelligent notification front end that uses activity recognition and machine learning to identify the best times to prompt smartphone users. We evaluate the performance of an activity-aware prompting approach based on 47 participants with fixed time and Thyme-based prompts. Our results show that responsiveness improves from 12.8% to 93.2% using this intelligent approach to the timing of smartphone-based prompts.\",\"PeriodicalId\":6636,\"journal\":{\"name\":\"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"87 1\",\"pages\":\"315-322\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2017.0-141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2017.0-141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

智能手机提示和通知很受欢迎,因为它们为用户提供了及时而重要的信息。然而,如果它们在不合适的时间出现并打断重要的任务,它们也会令人烦恼。在本文中,我们介绍了Thyme,这是一个智能通知前端,它使用活动识别和机器学习来识别提示智能手机用户的最佳时间。我们评估了基于47个参与者的活动感知提示方法的性能,这些参与者具有固定的时间和基于百里香的提示。我们的研究结果表明,使用这种智能方法对基于智能手机的提示进行计时,响应性从12.8%提高到93.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thyme: Improving Smartphone Prompt Timing Through Activity Awareness
Smartphone prompts and notifications are popular because they provide users with timely and important information. However, they can also be an annoyance if they pop up at inopportune times and interrupt important tasks. In this paper, we introduce Thyme, an intelligent notification front end that uses activity recognition and machine learning to identify the best times to prompt smartphone users. We evaluate the performance of an activity-aware prompting approach based on 47 participants with fixed time and Thyme-based prompts. Our results show that responsiveness improves from 12.8% to 93.2% using this intelligent approach to the timing of smartphone-based prompts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tree-Structured Curriculum Learning Based on Semantic Similarity of Text Direct Multiclass Boosting Using Base Classifiers' Posterior Probabilities Estimates Predicting Psychosis Using the Experience Sampling Method with Mobile Apps Human Action Recognition from Body-Part Directional Velocity Using Hidden Markov Models Realistic Traffic Generation for Web Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1