基于上下文兼容性建模的说服性非典型性检测

M. Guo, R. Hwa, Adriana Kovashka
{"title":"基于上下文兼容性建模的说服性非典型性检测","authors":"M. Guo, R. Hwa, Adriana Kovashka","doi":"10.1109/ICCV48922.2021.00101","DOIUrl":null,"url":null,"abstract":"We propose a new approach to detect atypicality in persuasive imagery. Unlike atypicality which has been studied in prior work, persuasive atypicality has a particular purpose to convey meaning, and relies on understanding the common-sense spatial relations of objects. We propose a self-supervised attention-based technique which captures contextual compatibility, and models spatial relations in a precise manner. We further experiment with capturing common sense through the semantics of co-occurring object classes. We verify our approach on a dataset of atypicality in visual advertisements, as well as a second dataset capturing atypicality that has no persuasive intent.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"5 1","pages":"952-962"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Detecting Persuasive Atypicality by Modeling Contextual Compatibility\",\"authors\":\"M. Guo, R. Hwa, Adriana Kovashka\",\"doi\":\"10.1109/ICCV48922.2021.00101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new approach to detect atypicality in persuasive imagery. Unlike atypicality which has been studied in prior work, persuasive atypicality has a particular purpose to convey meaning, and relies on understanding the common-sense spatial relations of objects. We propose a self-supervised attention-based technique which captures contextual compatibility, and models spatial relations in a precise manner. We further experiment with capturing common sense through the semantics of co-occurring object classes. We verify our approach on a dataset of atypicality in visual advertisements, as well as a second dataset capturing atypicality that has no persuasive intent.\",\"PeriodicalId\":6820,\"journal\":{\"name\":\"2021 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"5 1\",\"pages\":\"952-962\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV48922.2021.00101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.00101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们提出了一种新的方法来检测劝说意象的非典型性。与以往研究的非典型性不同,说服性非典型性具有特定的传达意义的目的,并依赖于对物体的常识性空间关系的理解。我们提出了一种自我监督的基于注意力的技术,该技术捕获上下文兼容性,并以精确的方式建模空间关系。我们进一步尝试通过共同发生的对象类的语义来捕获常识。我们在视觉广告的非典型性数据集上验证了我们的方法,以及第二个捕获非典型性的数据集,这些数据集没有说服性意图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting Persuasive Atypicality by Modeling Contextual Compatibility
We propose a new approach to detect atypicality in persuasive imagery. Unlike atypicality which has been studied in prior work, persuasive atypicality has a particular purpose to convey meaning, and relies on understanding the common-sense spatial relations of objects. We propose a self-supervised attention-based technique which captures contextual compatibility, and models spatial relations in a precise manner. We further experiment with capturing common sense through the semantics of co-occurring object classes. We verify our approach on a dataset of atypicality in visual advertisements, as well as a second dataset capturing atypicality that has no persuasive intent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Naturalistic Physical Adversarial Patch for Object Detectors Polarimetric Helmholtz Stereopsis Deep Transport Network for Unsupervised Video Object Segmentation Real-time Vanishing Point Detector Integrating Under-parameterized RANSAC and Hough Transform Adaptive Label Noise Cleaning with Meta-Supervision for Deep Face Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1