动态结构模型选择

David J. Weiss, Benjamin Sapp, B. Taskar
{"title":"动态结构模型选择","authors":"David J. Weiss, Benjamin Sapp, B. Taskar","doi":"10.1109/ICCV.2013.330","DOIUrl":null,"url":null,"abstract":"In many cases, the predictive power of structured models for for complex vision tasks is limited by a trade-off between the expressiveness and the computational tractability of the model. However, choosing this trade-off statically a priori is sub optimal, as images and videos in different settings vary tremendously in complexity. On the other hand, choosing the trade-off dynamically requires knowledge about the accuracy of different structured models on any given example. In this work, we propose a novel two-tier architecture that provides dynamic speed/accuracy trade-offs through a simple type of introspection. Our approach, which we call dynamic structured model selection (DMS), leverages typically intractable features in structured learning problems in order to automatically determine' which of several models should be used at test-time in order to maximize accuracy under a fixed budgetary constraint. We demonstrate DMS on two sequential modeling vision tasks, and we establish a new state-of-the-art in human pose estimation in video with an implementation that is roughly 23× faster than the previous standard implementation.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"13 1","pages":"2656-2663"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Dynamic Structured Model Selection\",\"authors\":\"David J. Weiss, Benjamin Sapp, B. Taskar\",\"doi\":\"10.1109/ICCV.2013.330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many cases, the predictive power of structured models for for complex vision tasks is limited by a trade-off between the expressiveness and the computational tractability of the model. However, choosing this trade-off statically a priori is sub optimal, as images and videos in different settings vary tremendously in complexity. On the other hand, choosing the trade-off dynamically requires knowledge about the accuracy of different structured models on any given example. In this work, we propose a novel two-tier architecture that provides dynamic speed/accuracy trade-offs through a simple type of introspection. Our approach, which we call dynamic structured model selection (DMS), leverages typically intractable features in structured learning problems in order to automatically determine' which of several models should be used at test-time in order to maximize accuracy under a fixed budgetary constraint. We demonstrate DMS on two sequential modeling vision tasks, and we establish a new state-of-the-art in human pose estimation in video with an implementation that is roughly 23× faster than the previous standard implementation.\",\"PeriodicalId\":6351,\"journal\":{\"name\":\"2013 IEEE International Conference on Computer Vision\",\"volume\":\"13 1\",\"pages\":\"2656-2663\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2013.330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

在许多情况下,复杂视觉任务的结构化模型的预测能力受到模型的表达性和计算可跟踪性之间的权衡的限制。然而,静态地先验地选择这种权衡是次优的,因为不同设置下的图像和视频的复杂性差异很大。另一方面,动态选择权衡需要了解任何给定示例上不同结构模型的准确性。在这项工作中,我们提出了一种新的两层架构,通过一种简单的自省提供动态的速度/精度权衡。我们的方法,我们称之为动态结构化模型选择(DMS),利用结构化学习问题中典型的棘手特征,以便自动确定在测试时应该使用几个模型中的哪个,以便在固定预算约束下最大化准确性。我们在两个顺序建模视觉任务上演示了DMS,并在视频中建立了一种新的人类姿态估计技术,其实现速度比以前的标准实现快大约23倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Structured Model Selection
In many cases, the predictive power of structured models for for complex vision tasks is limited by a trade-off between the expressiveness and the computational tractability of the model. However, choosing this trade-off statically a priori is sub optimal, as images and videos in different settings vary tremendously in complexity. On the other hand, choosing the trade-off dynamically requires knowledge about the accuracy of different structured models on any given example. In this work, we propose a novel two-tier architecture that provides dynamic speed/accuracy trade-offs through a simple type of introspection. Our approach, which we call dynamic structured model selection (DMS), leverages typically intractable features in structured learning problems in order to automatically determine' which of several models should be used at test-time in order to maximize accuracy under a fixed budgetary constraint. We demonstrate DMS on two sequential modeling vision tasks, and we establish a new state-of-the-art in human pose estimation in video with an implementation that is roughly 23× faster than the previous standard implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PixelTrack: A Fast Adaptive Algorithm for Tracking Non-rigid Objects A General Dense Image Matching Framework Combining Direct and Feature-Based Costs Latent Space Sparse Subspace Clustering Non-convex P-Norm Projection for Robust Sparsity Hierarchical Joint Max-Margin Learning of Mid and Top Level Representations for Visual Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1