{"title":"微纳米浮石的热性能和表面积性能","authors":"Ali Kilicer","doi":"10.4028/p-kh1ika","DOIUrl":null,"url":null,"abstract":"Raw pumice samples were modified with nano carbon black, borax, and nano carbon-borax using the sol-gel method by applying surface modification processes, and the changes in the thermal behavior of the surface modification of the raw pumice were studied by characterizing them with FE-SEM, EDX, FT-IR, XRD, BET and TGA-DTA. In the analyses made with FE-SEM, it was observed that the surface and pore structure of the raw pumice changed after the modified process, and in the EDX analysis, it was determined that nano carbon black and borax adhered to the surface of the raw pumice. In the XRD results, no change in the crystal structure of the raw pumice was observed after the modified treatment. TGA-DTA analysis showed that the mass loss of raw pumice (P) was greater than pumice-nano carbon black (PC), pumice-borax (PB), and pumice-borax-nano carbon black (PBC). Accordingly, raw pumice showed a mass loss of approximately 25%, pumice-borax (PB) and pumice-nano carbon black (PC) 0.45%, and pumice-borax-nano carbon black (PBC) nearly 3%. According to the BET analysis results, it was determined that the raw pumice has a surface area of 28.126 m2/g. After the surface modification process, the surface area of the raw pumice was determined as 52.127 m2/g in the pumice-nano carbon black sample, 49.125 m2/g in the pumice-borax sample, and 32.523 m2/g in the pumice-borax-carbon black sample. Considering the data obtained, the best surface properties were showed in pumice-nano carbon black (PC). Research results showed that; the modification process with nano carbon black and borax changed the thermal behavior of raw pumice.","PeriodicalId":16525,"journal":{"name":"Journal of Nano Research","volume":"1 1","pages":"61 - 76"},"PeriodicalIF":0.8000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal and Surface Area Properties of Micro and Nano Sized Pumice\",\"authors\":\"Ali Kilicer\",\"doi\":\"10.4028/p-kh1ika\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Raw pumice samples were modified with nano carbon black, borax, and nano carbon-borax using the sol-gel method by applying surface modification processes, and the changes in the thermal behavior of the surface modification of the raw pumice were studied by characterizing them with FE-SEM, EDX, FT-IR, XRD, BET and TGA-DTA. In the analyses made with FE-SEM, it was observed that the surface and pore structure of the raw pumice changed after the modified process, and in the EDX analysis, it was determined that nano carbon black and borax adhered to the surface of the raw pumice. In the XRD results, no change in the crystal structure of the raw pumice was observed after the modified treatment. TGA-DTA analysis showed that the mass loss of raw pumice (P) was greater than pumice-nano carbon black (PC), pumice-borax (PB), and pumice-borax-nano carbon black (PBC). Accordingly, raw pumice showed a mass loss of approximately 25%, pumice-borax (PB) and pumice-nano carbon black (PC) 0.45%, and pumice-borax-nano carbon black (PBC) nearly 3%. According to the BET analysis results, it was determined that the raw pumice has a surface area of 28.126 m2/g. After the surface modification process, the surface area of the raw pumice was determined as 52.127 m2/g in the pumice-nano carbon black sample, 49.125 m2/g in the pumice-borax sample, and 32.523 m2/g in the pumice-borax-carbon black sample. Considering the data obtained, the best surface properties were showed in pumice-nano carbon black (PC). Research results showed that; the modification process with nano carbon black and borax changed the thermal behavior of raw pumice.\",\"PeriodicalId\":16525,\"journal\":{\"name\":\"Journal of Nano Research\",\"volume\":\"1 1\",\"pages\":\"61 - 76\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.4028/p-kh1ika\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4028/p-kh1ika","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Thermal and Surface Area Properties of Micro and Nano Sized Pumice
Raw pumice samples were modified with nano carbon black, borax, and nano carbon-borax using the sol-gel method by applying surface modification processes, and the changes in the thermal behavior of the surface modification of the raw pumice were studied by characterizing them with FE-SEM, EDX, FT-IR, XRD, BET and TGA-DTA. In the analyses made with FE-SEM, it was observed that the surface and pore structure of the raw pumice changed after the modified process, and in the EDX analysis, it was determined that nano carbon black and borax adhered to the surface of the raw pumice. In the XRD results, no change in the crystal structure of the raw pumice was observed after the modified treatment. TGA-DTA analysis showed that the mass loss of raw pumice (P) was greater than pumice-nano carbon black (PC), pumice-borax (PB), and pumice-borax-nano carbon black (PBC). Accordingly, raw pumice showed a mass loss of approximately 25%, pumice-borax (PB) and pumice-nano carbon black (PC) 0.45%, and pumice-borax-nano carbon black (PBC) nearly 3%. According to the BET analysis results, it was determined that the raw pumice has a surface area of 28.126 m2/g. After the surface modification process, the surface area of the raw pumice was determined as 52.127 m2/g in the pumice-nano carbon black sample, 49.125 m2/g in the pumice-borax sample, and 32.523 m2/g in the pumice-borax-carbon black sample. Considering the data obtained, the best surface properties were showed in pumice-nano carbon black (PC). Research results showed that; the modification process with nano carbon black and borax changed the thermal behavior of raw pumice.
期刊介绍:
"Journal of Nano Research" (JNanoR) is a multidisciplinary journal, which publishes high quality scientific and engineering papers on all aspects of research in the area of nanoscience and nanotechnologies and wide practical application of achieved results.
"Journal of Nano Research" is one of the largest periodicals in the field of nanoscience and nanotechnologies. All papers are peer-reviewed and edited.
Authors retain the right to publish an extended and significantly updated version in another periodical.