策略正则化模型预测控制稳定麻省理工学院猎豹不同四足步态

G. Bledt, Patrick M. Wensing, Sangbae Kim
{"title":"策略正则化模型预测控制稳定麻省理工学院猎豹不同四足步态","authors":"G. Bledt, Patrick M. Wensing, Sangbae Kim","doi":"10.1109/IROS.2017.8206268","DOIUrl":null,"url":null,"abstract":"This paper introduces a new policy-regularized model-predictive control (PR-MPC) approach to automatically generate and stabilize a diverse set of quadrupedal gaits. Model-predictive methods offer great promise to address balance in dynamic robots, yet require the solution of challenging nonlinear optimization problems when applied to legged systems. The new proposed PR-MPC approach aims to improve the conditioning of these problems by adding regularization based on heuristic reference policies. With this approach, a unified MPC formulation is shown to generate and stabilize trotting, bounding, and galloping without retuning any cost-function parameters. Intuitively, the added regularization biases the solution of the MPC towards common heuristics from the literature that are based on simple physics. Simulation results show that PR-MPC improves the computation time and closed-loop outcomes of applying MPC to stabilize quadrupedal gaits.","PeriodicalId":6658,"journal":{"name":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"15 1","pages":"4102-4109"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":"{\"title\":\"Policy-regularized model predictive control to stabilize diverse quadrupedal gaits for the MIT cheetah\",\"authors\":\"G. Bledt, Patrick M. Wensing, Sangbae Kim\",\"doi\":\"10.1109/IROS.2017.8206268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new policy-regularized model-predictive control (PR-MPC) approach to automatically generate and stabilize a diverse set of quadrupedal gaits. Model-predictive methods offer great promise to address balance in dynamic robots, yet require the solution of challenging nonlinear optimization problems when applied to legged systems. The new proposed PR-MPC approach aims to improve the conditioning of these problems by adding regularization based on heuristic reference policies. With this approach, a unified MPC formulation is shown to generate and stabilize trotting, bounding, and galloping without retuning any cost-function parameters. Intuitively, the added regularization biases the solution of the MPC towards common heuristics from the literature that are based on simple physics. Simulation results show that PR-MPC improves the computation time and closed-loop outcomes of applying MPC to stabilize quadrupedal gaits.\",\"PeriodicalId\":6658,\"journal\":{\"name\":\"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"15 1\",\"pages\":\"4102-4109\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"68\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2017.8206268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2017.8206268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

摘要

本文介绍了一种新的策略正则化模型预测控制(PR-MPC)方法来自动生成和稳定一组不同的四足步态。模型预测方法为解决动态机器人的平衡问题提供了巨大的希望,但当应用于有腿系统时,需要解决具有挑战性的非线性优化问题。新提出的PR-MPC方法旨在通过增加基于启发式参考策略的正则化来改善这些问题的条件。通过这种方法,一个统一的MPC公式可以生成和稳定小跑、跳跃和驰骋,而无需返回任何成本函数参数。直观地说,增加的正则化使MPC的解决方案偏向于基于简单物理的文献中的常见启发式。仿真结果表明,PR-MPC提高了应用MPC稳定四足步态的计算时间和闭环效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Policy-regularized model predictive control to stabilize diverse quadrupedal gaits for the MIT cheetah
This paper introduces a new policy-regularized model-predictive control (PR-MPC) approach to automatically generate and stabilize a diverse set of quadrupedal gaits. Model-predictive methods offer great promise to address balance in dynamic robots, yet require the solution of challenging nonlinear optimization problems when applied to legged systems. The new proposed PR-MPC approach aims to improve the conditioning of these problems by adding regularization based on heuristic reference policies. With this approach, a unified MPC formulation is shown to generate and stabilize trotting, bounding, and galloping without retuning any cost-function parameters. Intuitively, the added regularization biases the solution of the MPC towards common heuristics from the literature that are based on simple physics. Simulation results show that PR-MPC improves the computation time and closed-loop outcomes of applying MPC to stabilize quadrupedal gaits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Direct visual SLAM fusing proprioception for a humanoid robot Upper limb motion intent recognition using tactile sensing Soft fluidic rotary actuator with improved actuation properties Underwater 3D structures as semantic landmarks in SONAR mapping Adaptive perception: Learning from sensory predictions to extract object shape with a biomimetic fingertip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1