I. Seo, Ka-young Lee, Cheol-Min Oh, Hyoung-Won Kang
{"title":"后BaTiO3 (BT)陶瓷中氧空位对下一代mlcc影响的研究趋势","authors":"I. Seo, Ka-young Lee, Cheol-Min Oh, Hyoung-Won Kang","doi":"10.31613/ceramist.2023.26.2.02","DOIUrl":null,"url":null,"abstract":"In line with the trend towards electrification in mobility, there is a demand for the development of next-generation Multilayer Ceramic Capacitors(MLCCs) with superior properties compared to those using the conventional BaTiO3 (BT) ceramics. For this, various high-performing ferroelectric ceramics have been proposed as post-BT materials, and numerous studies have been conducted on the role of oxygen vacancies within these materials. It has been confirmed that oxygen vacancies in the ceramic material have a significant impact on various properties such as oxygen ionic conduction, IR degradation, microstructure, aging degradation, and hardening effect, and by controlling the concentration and mobility of oxygen vacancies, it is possible to adjust these properties. We hope that research on the role of oxygen vacancies in various high-performing ferroelectric ceramics will be utilized as a foundation of knowledge for the development of next-generation MLCCs in the future.","PeriodicalId":9738,"journal":{"name":"Ceramist","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research Trends on the Influence of Oxygen Vacancies in Post BaTiO3 (BT) Ceramics for Next-Generation MLCCs\",\"authors\":\"I. Seo, Ka-young Lee, Cheol-Min Oh, Hyoung-Won Kang\",\"doi\":\"10.31613/ceramist.2023.26.2.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In line with the trend towards electrification in mobility, there is a demand for the development of next-generation Multilayer Ceramic Capacitors(MLCCs) with superior properties compared to those using the conventional BaTiO3 (BT) ceramics. For this, various high-performing ferroelectric ceramics have been proposed as post-BT materials, and numerous studies have been conducted on the role of oxygen vacancies within these materials. It has been confirmed that oxygen vacancies in the ceramic material have a significant impact on various properties such as oxygen ionic conduction, IR degradation, microstructure, aging degradation, and hardening effect, and by controlling the concentration and mobility of oxygen vacancies, it is possible to adjust these properties. We hope that research on the role of oxygen vacancies in various high-performing ferroelectric ceramics will be utilized as a foundation of knowledge for the development of next-generation MLCCs in the future.\",\"PeriodicalId\":9738,\"journal\":{\"name\":\"Ceramist\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ceramist\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31613/ceramist.2023.26.2.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31613/ceramist.2023.26.2.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research Trends on the Influence of Oxygen Vacancies in Post BaTiO3 (BT) Ceramics for Next-Generation MLCCs
In line with the trend towards electrification in mobility, there is a demand for the development of next-generation Multilayer Ceramic Capacitors(MLCCs) with superior properties compared to those using the conventional BaTiO3 (BT) ceramics. For this, various high-performing ferroelectric ceramics have been proposed as post-BT materials, and numerous studies have been conducted on the role of oxygen vacancies within these materials. It has been confirmed that oxygen vacancies in the ceramic material have a significant impact on various properties such as oxygen ionic conduction, IR degradation, microstructure, aging degradation, and hardening effect, and by controlling the concentration and mobility of oxygen vacancies, it is possible to adjust these properties. We hope that research on the role of oxygen vacancies in various high-performing ferroelectric ceramics will be utilized as a foundation of knowledge for the development of next-generation MLCCs in the future.