钢筋混凝土柱腐蚀损伤的集总塑性模型

H. Roohbakhsh, A. Kalantari, M. Kashani, Akanshu Sharma
{"title":"钢筋混凝土柱腐蚀损伤的集总塑性模型","authors":"H. Roohbakhsh, A. Kalantari, M. Kashani, Akanshu Sharma","doi":"10.1680/jbren.21.00006","DOIUrl":null,"url":null,"abstract":"Chloride-induced corrosion is one of the most important reasons for the strength degradation of reinforced concrete (RC) bridges. As the piers of RC bridges are important element to sustain lateral loads, corrosion of columns in pier may lead to significant degradation. So it is necessary to have an appropriate evaluation technique to assess the effect of corrosion on the RC columns behaviour. Numerical modelling approaches which are based on the concentrated plastic hinge can predict structural behaviour rapidly and with acceptable accuracy which are highly regarded by engineers. In this study, a numerical approach is conducted to develop an empirical lumped plasticity model for corroded RC column elements. 13440 RC column specimens, including corroded and uncorroded, rectangular, and circular cross sections are analysed under monotonic and cyclic loading. Lumped plasticity model is extracted based on the regression of the cyclic and monotonic analysis results. Finally, calibrated model is verified through experimental and out-of-parametric study models with high accuracy. The new developed plastic hinge model can be used to model and analyse corroded bridge columns rapidly. The result can be appropriate to be employed for modelling in the further assessment such as fragility analysis or rehabilitation.","PeriodicalId":44437,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Bridge Engineering","volume":"15 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A lumped plasticity model for corrosion damaged reinforced concrete columns\",\"authors\":\"H. Roohbakhsh, A. Kalantari, M. Kashani, Akanshu Sharma\",\"doi\":\"10.1680/jbren.21.00006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chloride-induced corrosion is one of the most important reasons for the strength degradation of reinforced concrete (RC) bridges. As the piers of RC bridges are important element to sustain lateral loads, corrosion of columns in pier may lead to significant degradation. So it is necessary to have an appropriate evaluation technique to assess the effect of corrosion on the RC columns behaviour. Numerical modelling approaches which are based on the concentrated plastic hinge can predict structural behaviour rapidly and with acceptable accuracy which are highly regarded by engineers. In this study, a numerical approach is conducted to develop an empirical lumped plasticity model for corroded RC column elements. 13440 RC column specimens, including corroded and uncorroded, rectangular, and circular cross sections are analysed under monotonic and cyclic loading. Lumped plasticity model is extracted based on the regression of the cyclic and monotonic analysis results. Finally, calibrated model is verified through experimental and out-of-parametric study models with high accuracy. The new developed plastic hinge model can be used to model and analyse corroded bridge columns rapidly. The result can be appropriate to be employed for modelling in the further assessment such as fragility analysis or rehabilitation.\",\"PeriodicalId\":44437,\"journal\":{\"name\":\"Proceedings of the Institution of Civil Engineers-Bridge Engineering\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Civil Engineers-Bridge Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1680/jbren.21.00006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Bridge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jbren.21.00006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

氯化物腐蚀是钢筋混凝土桥梁强度退化的重要原因之一。钢筋混凝土桥梁的桥墩是支撑横向荷载的重要构件,桥墩柱的腐蚀会导致桥梁的严重退化。因此,有必要采用合适的评估技术来评估腐蚀对钢筋混凝土柱性能的影响。基于集中塑性铰的数值模拟方法可以快速、准确地预测结构性能,受到工程技术人员的高度重视。本文采用数值方法建立了钢筋混凝土腐蚀柱单元的经验集总塑性模型。13440个RC柱试件,包括腐蚀和未腐蚀,矩形和圆形截面在单调和循环荷载下进行了分析。在循环分析和单调分析结果回归的基础上,提取了集总塑性模型。最后,通过实验和非参数研究模型对标定后的模型进行了高精度验证。所建立的塑性铰模型可用于桥梁腐蚀柱的快速建模和分析。结果可以适当地用于进一步评估的建模,如脆弱性分析或恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A lumped plasticity model for corrosion damaged reinforced concrete columns
Chloride-induced corrosion is one of the most important reasons for the strength degradation of reinforced concrete (RC) bridges. As the piers of RC bridges are important element to sustain lateral loads, corrosion of columns in pier may lead to significant degradation. So it is necessary to have an appropriate evaluation technique to assess the effect of corrosion on the RC columns behaviour. Numerical modelling approaches which are based on the concentrated plastic hinge can predict structural behaviour rapidly and with acceptable accuracy which are highly regarded by engineers. In this study, a numerical approach is conducted to develop an empirical lumped plasticity model for corroded RC column elements. 13440 RC column specimens, including corroded and uncorroded, rectangular, and circular cross sections are analysed under monotonic and cyclic loading. Lumped plasticity model is extracted based on the regression of the cyclic and monotonic analysis results. Finally, calibrated model is verified through experimental and out-of-parametric study models with high accuracy. The new developed plastic hinge model can be used to model and analyse corroded bridge columns rapidly. The result can be appropriate to be employed for modelling in the further assessment such as fragility analysis or rehabilitation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
10.00%
发文量
48
期刊最新文献
Hybrid machine learning model for prediction of vertical deflection of composite bridges A control chart to evaluate the control effect of a bridge under active control Design of stone masonry bridges in European treatises: Part 1 – The geometrical configuration Extreme fjord-crossings development in the E39 coastal highway route project – a review The replacement of the Kosciuszko Bridge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1