Malavi T. Madireddi , James F. Smothers , C. David Allis
{"title":"不浪费,不需要:纤毛虫发育过程中DNA消除是否会促进基因扩增?","authors":"Malavi T. Madireddi , James F. Smothers , C. David Allis","doi":"10.1016/S1044-5781(06)80072-1","DOIUrl":null,"url":null,"abstract":"<div><p>The sexual phase of the life cycle in ciliates represents a developmental program with several parallels to multicellular development. During this pathway an undifferentiated zygotic nucleus gives rise to two lineages, a germinal micronuclear lineage and a somatic macronuclear lineage. The development of nascent macronuclei (or ‘anlagen’) from micronuclei involves a highly regulated set of DNA rearrangements which include chromosomal breakage, telomere addition, DNA elimination and gene amplification. Here we review recent progress in identifying stage-specific polypeptides from <em>Tetrahymena</em> analgen that are likely to be involved in these rearrangements. One of the more abundant of these polypeptides, p65, participates in the formation of DNA-containing structures that resemble developing nucleoli. We propose a simple model in which the micronuclear gene segments that are not to be included in the mature macronuclear genome are first digested in these p65-based particles, and then the resulting nucleotides are ‘recycled’ by using them to amplify rDNA. Our ‘intranuclear recycling’ model suggests a possible compartmentalization strategy that functions to ensure adequate rDNA/rRNA production during macronuclear development. Implications of the model for programmed DNA rearrangements and nucleolar biogenesis are discussed.</p></div>","PeriodicalId":101155,"journal":{"name":"Seminars in Developmental Biology","volume":"6 5","pages":"Pages 305-315"},"PeriodicalIF":0.0000,"publicationDate":"1995-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1044-5781(06)80072-1","citationCount":"7","resultStr":"{\"title\":\"Waste not, want not: Does DNA elimination fuel gene amplification during development in ciliates?\",\"authors\":\"Malavi T. Madireddi , James F. Smothers , C. David Allis\",\"doi\":\"10.1016/S1044-5781(06)80072-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The sexual phase of the life cycle in ciliates represents a developmental program with several parallels to multicellular development. During this pathway an undifferentiated zygotic nucleus gives rise to two lineages, a germinal micronuclear lineage and a somatic macronuclear lineage. The development of nascent macronuclei (or ‘anlagen’) from micronuclei involves a highly regulated set of DNA rearrangements which include chromosomal breakage, telomere addition, DNA elimination and gene amplification. Here we review recent progress in identifying stage-specific polypeptides from <em>Tetrahymena</em> analgen that are likely to be involved in these rearrangements. One of the more abundant of these polypeptides, p65, participates in the formation of DNA-containing structures that resemble developing nucleoli. We propose a simple model in which the micronuclear gene segments that are not to be included in the mature macronuclear genome are first digested in these p65-based particles, and then the resulting nucleotides are ‘recycled’ by using them to amplify rDNA. Our ‘intranuclear recycling’ model suggests a possible compartmentalization strategy that functions to ensure adequate rDNA/rRNA production during macronuclear development. Implications of the model for programmed DNA rearrangements and nucleolar biogenesis are discussed.</p></div>\",\"PeriodicalId\":101155,\"journal\":{\"name\":\"Seminars in Developmental Biology\",\"volume\":\"6 5\",\"pages\":\"Pages 305-315\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1044-5781(06)80072-1\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in Developmental Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044578106800721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044578106800721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Waste not, want not: Does DNA elimination fuel gene amplification during development in ciliates?
The sexual phase of the life cycle in ciliates represents a developmental program with several parallels to multicellular development. During this pathway an undifferentiated zygotic nucleus gives rise to two lineages, a germinal micronuclear lineage and a somatic macronuclear lineage. The development of nascent macronuclei (or ‘anlagen’) from micronuclei involves a highly regulated set of DNA rearrangements which include chromosomal breakage, telomere addition, DNA elimination and gene amplification. Here we review recent progress in identifying stage-specific polypeptides from Tetrahymena analgen that are likely to be involved in these rearrangements. One of the more abundant of these polypeptides, p65, participates in the formation of DNA-containing structures that resemble developing nucleoli. We propose a simple model in which the micronuclear gene segments that are not to be included in the mature macronuclear genome are first digested in these p65-based particles, and then the resulting nucleotides are ‘recycled’ by using them to amplify rDNA. Our ‘intranuclear recycling’ model suggests a possible compartmentalization strategy that functions to ensure adequate rDNA/rRNA production during macronuclear development. Implications of the model for programmed DNA rearrangements and nucleolar biogenesis are discussed.