{"title":"利用 Wi-Fi 传感器技术估算当地交通状况","authors":"","doi":"10.1080/15472450.2023.2177103","DOIUrl":null,"url":null,"abstract":"<div><p>Real-time traffic data is fundamental for active traffic monitoring and control. Traditionally, traffic data are collected using location-based sensors and spatial sensors. However, both sensors have well-known limitations due to installation, operations, maintenance costs, and environmental factors. This study develops a methodology to use Wi-Fi sensors for traffic state characterization on urban roads to overcome these limitations. We examine the received signal strength indicator (RSSI) patterns and identify three distinct RSSI signature patterns. These patterns are used to develop methodologies to estimate (a) Whether the position of the end of the queue is upstream or downstream of the detector, (b) Whether the traffic conditions in the vicinity of the detector are uniformly uncongested or uniformly congested, and (c) The maximum queue length and the time is taken for the queue to grow to the maximum extent. The estimates from the methodology are validated with empirical data that showed good concurrence with field conditions, and the methods proposed in this article have the potential to estimate the traffic conditions using sparse data from Wi-Fi sensors.</p></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"28 5","pages":"Pages 618-635"},"PeriodicalIF":2.8000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of local traffic conditions using Wi-Fi sensor technology\",\"authors\":\"\",\"doi\":\"10.1080/15472450.2023.2177103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Real-time traffic data is fundamental for active traffic monitoring and control. Traditionally, traffic data are collected using location-based sensors and spatial sensors. However, both sensors have well-known limitations due to installation, operations, maintenance costs, and environmental factors. This study develops a methodology to use Wi-Fi sensors for traffic state characterization on urban roads to overcome these limitations. We examine the received signal strength indicator (RSSI) patterns and identify three distinct RSSI signature patterns. These patterns are used to develop methodologies to estimate (a) Whether the position of the end of the queue is upstream or downstream of the detector, (b) Whether the traffic conditions in the vicinity of the detector are uniformly uncongested or uniformly congested, and (c) The maximum queue length and the time is taken for the queue to grow to the maximum extent. The estimates from the methodology are validated with empirical data that showed good concurrence with field conditions, and the methods proposed in this article have the potential to estimate the traffic conditions using sparse data from Wi-Fi sensors.</p></div>\",\"PeriodicalId\":54792,\"journal\":{\"name\":\"Journal of Intelligent Transportation Systems\",\"volume\":\"28 5\",\"pages\":\"Pages 618-635\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1547245023000397\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1547245023000397","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
Estimation of local traffic conditions using Wi-Fi sensor technology
Real-time traffic data is fundamental for active traffic monitoring and control. Traditionally, traffic data are collected using location-based sensors and spatial sensors. However, both sensors have well-known limitations due to installation, operations, maintenance costs, and environmental factors. This study develops a methodology to use Wi-Fi sensors for traffic state characterization on urban roads to overcome these limitations. We examine the received signal strength indicator (RSSI) patterns and identify three distinct RSSI signature patterns. These patterns are used to develop methodologies to estimate (a) Whether the position of the end of the queue is upstream or downstream of the detector, (b) Whether the traffic conditions in the vicinity of the detector are uniformly uncongested or uniformly congested, and (c) The maximum queue length and the time is taken for the queue to grow to the maximum extent. The estimates from the methodology are validated with empirical data that showed good concurrence with field conditions, and the methods proposed in this article have the potential to estimate the traffic conditions using sparse data from Wi-Fi sensors.
期刊介绍:
The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new.
The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption.
The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.