基于信道估计误差和速率的双跳多路半双工/全双工双向无线中继网络机会中继选择

V. Ozduran, E. Soleimani-Nasab, B. Yarman
{"title":"基于信道估计误差和速率的双跳多路半双工/全双工双向无线中继网络机会中继选择","authors":"V. Ozduran, E. Soleimani-Nasab, B. Yarman","doi":"10.1109/WOCC.2017.7929009","DOIUrl":null,"url":null,"abstract":"This paper investigates the channel estimation error effects on the opportunistic relay selection strategy. The opportunistic relay selection strategy is based on selecting the maximum sum-rate of half/full-duplex relay terminal among N. The investigation considers a dual-hop multiple half/full-duplex bi-directional wireless relaying networks in the system model. According to Monte-Carlo simulation results, sum-rate based relay selection strategy achieves cooperative diversity in high signal-to-noise regimes both for half/full-duplex cases. However, for the full-duplex based case, if the loop interference variances are relatively high, the achievable cooperative diversity turns out to be 0 from N while also causes system coding gain losses. The CEE causes system coding gain losses in low signal-to-noise ratio regimes. However, in high signal-to-noise ratio regimes, the CEE effects turn out to be at negligible levels.","PeriodicalId":6471,"journal":{"name":"2017 26th Wireless and Optical Communication Conference (WOCC)","volume":"37 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Sum-rate based opportunistic relay selection with channel estimation error for a dual-hop multiple half/full-duplex bi-directional wireless relaying networks\",\"authors\":\"V. Ozduran, E. Soleimani-Nasab, B. Yarman\",\"doi\":\"10.1109/WOCC.2017.7929009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the channel estimation error effects on the opportunistic relay selection strategy. The opportunistic relay selection strategy is based on selecting the maximum sum-rate of half/full-duplex relay terminal among N. The investigation considers a dual-hop multiple half/full-duplex bi-directional wireless relaying networks in the system model. According to Monte-Carlo simulation results, sum-rate based relay selection strategy achieves cooperative diversity in high signal-to-noise regimes both for half/full-duplex cases. However, for the full-duplex based case, if the loop interference variances are relatively high, the achievable cooperative diversity turns out to be 0 from N while also causes system coding gain losses. The CEE causes system coding gain losses in low signal-to-noise ratio regimes. However, in high signal-to-noise ratio regimes, the CEE effects turn out to be at negligible levels.\",\"PeriodicalId\":6471,\"journal\":{\"name\":\"2017 26th Wireless and Optical Communication Conference (WOCC)\",\"volume\":\"37 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 26th Wireless and Optical Communication Conference (WOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WOCC.2017.7929009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 26th Wireless and Optical Communication Conference (WOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC.2017.7929009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

研究了信道估计误差对机会中继选择策略的影响。机会中继选择策略基于在n个中继终端中选择半/全双工中继终端的最大和速率,研究在系统模型中考虑了一个双跳多半/全双工双向无线中继网络。蒙特卡罗仿真结果表明,基于和速率的中继选择策略在半双工和全双工高信噪比条件下均能实现协同分集。然而,对于基于全双工的情况,如果环路干扰方差较大,则可实现的协同分集从N变为0,同时也会造成系统编码增益损失。在低信噪比条件下,CEE会导致系统编码增益损失。然而,在高信噪比制度,CEE的影响原来是在可忽略不计的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sum-rate based opportunistic relay selection with channel estimation error for a dual-hop multiple half/full-duplex bi-directional wireless relaying networks
This paper investigates the channel estimation error effects on the opportunistic relay selection strategy. The opportunistic relay selection strategy is based on selecting the maximum sum-rate of half/full-duplex relay terminal among N. The investigation considers a dual-hop multiple half/full-duplex bi-directional wireless relaying networks in the system model. According to Monte-Carlo simulation results, sum-rate based relay selection strategy achieves cooperative diversity in high signal-to-noise regimes both for half/full-duplex cases. However, for the full-duplex based case, if the loop interference variances are relatively high, the achievable cooperative diversity turns out to be 0 from N while also causes system coding gain losses. The CEE causes system coding gain losses in low signal-to-noise ratio regimes. However, in high signal-to-noise ratio regimes, the CEE effects turn out to be at negligible levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Polarization Index Experimental investigation of DCO-OFDM adaptive loading using Si PN-based receiver Linearization of a Radio-over-Fiber mobile fronthaul with feedback loop Decision tree rule-based feature selection for large-scale imbalanced data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1