{"title":"基于信道估计误差和速率的双跳多路半双工/全双工双向无线中继网络机会中继选择","authors":"V. Ozduran, E. Soleimani-Nasab, B. Yarman","doi":"10.1109/WOCC.2017.7929009","DOIUrl":null,"url":null,"abstract":"This paper investigates the channel estimation error effects on the opportunistic relay selection strategy. The opportunistic relay selection strategy is based on selecting the maximum sum-rate of half/full-duplex relay terminal among N. The investigation considers a dual-hop multiple half/full-duplex bi-directional wireless relaying networks in the system model. According to Monte-Carlo simulation results, sum-rate based relay selection strategy achieves cooperative diversity in high signal-to-noise regimes both for half/full-duplex cases. However, for the full-duplex based case, if the loop interference variances are relatively high, the achievable cooperative diversity turns out to be 0 from N while also causes system coding gain losses. The CEE causes system coding gain losses in low signal-to-noise ratio regimes. However, in high signal-to-noise ratio regimes, the CEE effects turn out to be at negligible levels.","PeriodicalId":6471,"journal":{"name":"2017 26th Wireless and Optical Communication Conference (WOCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Sum-rate based opportunistic relay selection with channel estimation error for a dual-hop multiple half/full-duplex bi-directional wireless relaying networks\",\"authors\":\"V. Ozduran, E. Soleimani-Nasab, B. Yarman\",\"doi\":\"10.1109/WOCC.2017.7929009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the channel estimation error effects on the opportunistic relay selection strategy. The opportunistic relay selection strategy is based on selecting the maximum sum-rate of half/full-duplex relay terminal among N. The investigation considers a dual-hop multiple half/full-duplex bi-directional wireless relaying networks in the system model. According to Monte-Carlo simulation results, sum-rate based relay selection strategy achieves cooperative diversity in high signal-to-noise regimes both for half/full-duplex cases. However, for the full-duplex based case, if the loop interference variances are relatively high, the achievable cooperative diversity turns out to be 0 from N while also causes system coding gain losses. The CEE causes system coding gain losses in low signal-to-noise ratio regimes. However, in high signal-to-noise ratio regimes, the CEE effects turn out to be at negligible levels.\",\"PeriodicalId\":6471,\"journal\":{\"name\":\"2017 26th Wireless and Optical Communication Conference (WOCC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 26th Wireless and Optical Communication Conference (WOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WOCC.2017.7929009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 26th Wireless and Optical Communication Conference (WOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC.2017.7929009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sum-rate based opportunistic relay selection with channel estimation error for a dual-hop multiple half/full-duplex bi-directional wireless relaying networks
This paper investigates the channel estimation error effects on the opportunistic relay selection strategy. The opportunistic relay selection strategy is based on selecting the maximum sum-rate of half/full-duplex relay terminal among N. The investigation considers a dual-hop multiple half/full-duplex bi-directional wireless relaying networks in the system model. According to Monte-Carlo simulation results, sum-rate based relay selection strategy achieves cooperative diversity in high signal-to-noise regimes both for half/full-duplex cases. However, for the full-duplex based case, if the loop interference variances are relatively high, the achievable cooperative diversity turns out to be 0 from N while also causes system coding gain losses. The CEE causes system coding gain losses in low signal-to-noise ratio regimes. However, in high signal-to-noise ratio regimes, the CEE effects turn out to be at negligible levels.