Célestine Berthier, Julien Perret, A. Eglinger, A. André-Mayer, J. Feneyrol, A. Voinot, Y. Teitler, Rémi Bosc
{"title":"黄铁矿作为成矿过程的微结构和地球化学示踪剂,苏丹Gabgaba地区造山带金矿床","authors":"Célestine Berthier, Julien Perret, A. Eglinger, A. André-Mayer, J. Feneyrol, A. Voinot, Y. Teitler, Rémi Bosc","doi":"10.5382/econgeo.5001","DOIUrl":null,"url":null,"abstract":"\n Gold deposition in structurally controlled deposits is triggered by changes in the mineralizing fluid conditions. Recent research has demonstrated that in deposits with a well-established paragenesis, the processes that control the ore-forming fluid conditions, and thus the gold timing and deposition, can be inferred from the study of both textural and chemical characteristics of ore-bearing minerals such as sulfides, which are ubiquitous in almost every gold deposit type. In this contribution, we carried out a coupled investigation of (1) microscopic-scale expression of regional deformation, (2) textures of mineralized veins and pyrite generations, and (3) laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) trace element concentrations in pyrite from the Neoproterozoic Central Zone gold deposit, located in the poorly studied Gabgaba gold district, central Keraf suture, Sudanese Nubian shield.\n The Central Zone gold mineralization is associated with late-collisional Keraf strike-slip shearing. It is expressed by visible gold-bearing quartz-ankerite-(albite) conjugate veins hosted by metagranitoids surrounded by metasediments. Some structurally lattice-bound gold occurs in proximal As-Au-Ni–enriched pyrite associated with sericite-albite-ankerite alteration. Vein textures and proximal pyrite oscillatory zoning and geochemical signatures indicate that vein infilling occurred as a response to sudden pressure drops and boiling of the mineralizing fluid. We therefore interpret the Central Zone deposit as a typical orogenic gold deposit, with microtextural evidence and geochemical data supporting the existence of earthquake-induced fault-valve processes.","PeriodicalId":11469,"journal":{"name":"Economic Geology","volume":"1 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pyrite as a Microtextural and Geochemical Tracer of Ore-Forming Processes, Central Zone Orogenic Gold Deposit, Gabgaba District, Sudan\",\"authors\":\"Célestine Berthier, Julien Perret, A. Eglinger, A. André-Mayer, J. Feneyrol, A. Voinot, Y. Teitler, Rémi Bosc\",\"doi\":\"10.5382/econgeo.5001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Gold deposition in structurally controlled deposits is triggered by changes in the mineralizing fluid conditions. Recent research has demonstrated that in deposits with a well-established paragenesis, the processes that control the ore-forming fluid conditions, and thus the gold timing and deposition, can be inferred from the study of both textural and chemical characteristics of ore-bearing minerals such as sulfides, which are ubiquitous in almost every gold deposit type. In this contribution, we carried out a coupled investigation of (1) microscopic-scale expression of regional deformation, (2) textures of mineralized veins and pyrite generations, and (3) laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) trace element concentrations in pyrite from the Neoproterozoic Central Zone gold deposit, located in the poorly studied Gabgaba gold district, central Keraf suture, Sudanese Nubian shield.\\n The Central Zone gold mineralization is associated with late-collisional Keraf strike-slip shearing. It is expressed by visible gold-bearing quartz-ankerite-(albite) conjugate veins hosted by metagranitoids surrounded by metasediments. Some structurally lattice-bound gold occurs in proximal As-Au-Ni–enriched pyrite associated with sericite-albite-ankerite alteration. Vein textures and proximal pyrite oscillatory zoning and geochemical signatures indicate that vein infilling occurred as a response to sudden pressure drops and boiling of the mineralizing fluid. We therefore interpret the Central Zone deposit as a typical orogenic gold deposit, with microtextural evidence and geochemical data supporting the existence of earthquake-induced fault-valve processes.\",\"PeriodicalId\":11469,\"journal\":{\"name\":\"Economic Geology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2023-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Economic Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5382/econgeo.5001\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economic Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5382/econgeo.5001","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Pyrite as a Microtextural and Geochemical Tracer of Ore-Forming Processes, Central Zone Orogenic Gold Deposit, Gabgaba District, Sudan
Gold deposition in structurally controlled deposits is triggered by changes in the mineralizing fluid conditions. Recent research has demonstrated that in deposits with a well-established paragenesis, the processes that control the ore-forming fluid conditions, and thus the gold timing and deposition, can be inferred from the study of both textural and chemical characteristics of ore-bearing minerals such as sulfides, which are ubiquitous in almost every gold deposit type. In this contribution, we carried out a coupled investigation of (1) microscopic-scale expression of regional deformation, (2) textures of mineralized veins and pyrite generations, and (3) laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) trace element concentrations in pyrite from the Neoproterozoic Central Zone gold deposit, located in the poorly studied Gabgaba gold district, central Keraf suture, Sudanese Nubian shield.
The Central Zone gold mineralization is associated with late-collisional Keraf strike-slip shearing. It is expressed by visible gold-bearing quartz-ankerite-(albite) conjugate veins hosted by metagranitoids surrounded by metasediments. Some structurally lattice-bound gold occurs in proximal As-Au-Ni–enriched pyrite associated with sericite-albite-ankerite alteration. Vein textures and proximal pyrite oscillatory zoning and geochemical signatures indicate that vein infilling occurred as a response to sudden pressure drops and boiling of the mineralizing fluid. We therefore interpret the Central Zone deposit as a typical orogenic gold deposit, with microtextural evidence and geochemical data supporting the existence of earthquake-induced fault-valve processes.
期刊介绍:
The journal, now published semi-quarterly, was first published in 1905 by the Economic Geology Publishing Company (PUBCO), a not-for-profit company established for the purpose of publishing a periodical devoted to economic geology. On the founding of SEG in 1920, a cooperative arrangement between PUBCO and SEG made the journal the official organ of the Society, and PUBCO agreed to carry the Society''s name on the front cover under the heading "Bulletin of the Society of Economic Geologists". PUBCO and SEG continued to operate as cooperating but separate entities until 2001, when the Board of Directors of PUBCO and the Council of SEG, by unanimous consent, approved a formal agreement of merger. The former activities of the PUBCO Board of Directors are now carried out by a Publications Board, a new self-governing unit within SEG.