胡塞武装“萨马德”攻击型无人机飞行性能分析

IF 0.7 Q3 INTERNATIONAL RELATIONS Science & Global Security Pub Date : 2020-09-01 DOI:10.1080/08929882.2020.1846279
M. Voskuijl, Thomas Dekkers, R. Savelsberg
{"title":"胡塞武装“萨马德”攻击型无人机飞行性能分析","authors":"M. Voskuijl, Thomas Dekkers, R. Savelsberg","doi":"10.1080/08929882.2020.1846279","DOIUrl":null,"url":null,"abstract":"Abstract In recent years, there has been a large increase in the use of uncrewed attack aircraft, or attack drones, in the Yemen conflict. At the same time, the flight endurance and payload capabilities of these uncrewed aerial vehicles seem to have increased significantly. This article presents a flight performance analysis of the Samad aircraft family operated by Ansar Allah, the Houthi rebel movement. The analysis is based on information available in the public domain and accounts for modeling uncertainties, and terrain under weather conditions typical for Yemen and Saudi Arabia. With only limited data available in the form of images, the analysis method assesses the flight performance of fixed-wing attack aircraft with high aspect ratio wings and powered by piston engines and propellers. Results demonstrate that it is highly unlikely that the Samad-2 version could reach strategic locations in Saudi Arabia when launched from Houthi-controlled territory. The analysis shows that Samad-3, however, can achieve a flight range in excess of 1800 km, bringing Riyadh and oil installations near the Persian Gulf into reach. The results of the study can be used to predict the locations from which the Samad UAV can be deployed in an attack. Furthermore, it gives insight into the increasing threat of this type of UAV when employed by non-state actors. The methods and tools developed in this study can be used to analyze the capabilities of other UAV with similar configurations.","PeriodicalId":55952,"journal":{"name":"Science & Global Security","volume":"36 1","pages":"113 - 134"},"PeriodicalIF":0.7000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Flight Performance Analysis of the Samad Attack Drones Operated by Houthi Armed Forces\",\"authors\":\"M. Voskuijl, Thomas Dekkers, R. Savelsberg\",\"doi\":\"10.1080/08929882.2020.1846279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In recent years, there has been a large increase in the use of uncrewed attack aircraft, or attack drones, in the Yemen conflict. At the same time, the flight endurance and payload capabilities of these uncrewed aerial vehicles seem to have increased significantly. This article presents a flight performance analysis of the Samad aircraft family operated by Ansar Allah, the Houthi rebel movement. The analysis is based on information available in the public domain and accounts for modeling uncertainties, and terrain under weather conditions typical for Yemen and Saudi Arabia. With only limited data available in the form of images, the analysis method assesses the flight performance of fixed-wing attack aircraft with high aspect ratio wings and powered by piston engines and propellers. Results demonstrate that it is highly unlikely that the Samad-2 version could reach strategic locations in Saudi Arabia when launched from Houthi-controlled territory. The analysis shows that Samad-3, however, can achieve a flight range in excess of 1800 km, bringing Riyadh and oil installations near the Persian Gulf into reach. The results of the study can be used to predict the locations from which the Samad UAV can be deployed in an attack. Furthermore, it gives insight into the increasing threat of this type of UAV when employed by non-state actors. The methods and tools developed in this study can be used to analyze the capabilities of other UAV with similar configurations.\",\"PeriodicalId\":55952,\"journal\":{\"name\":\"Science & Global Security\",\"volume\":\"36 1\",\"pages\":\"113 - 134\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science & Global Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/08929882.2020.1846279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INTERNATIONAL RELATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science & Global Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/08929882.2020.1846279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INTERNATIONAL RELATIONS","Score":null,"Total":0}
引用次数: 4

摘要

近年来,在也门冲突中,无人攻击机或攻击无人机的使用大幅增加。与此同时,这些无人驾驶飞行器的飞行续航力和有效载荷能力似乎有了显著提高。本文介绍了胡塞反政府武装“安拉卫士”(Ansar Allah)运营的萨马德系列飞机的飞行性能分析。该分析基于公共领域的可用信息,并考虑了建模的不确定性以及也门和沙特阿拉伯典型天气条件下的地形。该分析方法在图像数据有限的情况下,对高展弦比机翼、活塞发动机和螺旋桨驱动的固定翼攻击机的飞行性能进行了评估。结果表明,当从胡塞控制的领土发射时,Samad-2版本极不可能到达沙特阿拉伯的战略位置。分析显示,Samad-3的飞行距离超过1800公里,可将波斯湾附近的利雅得和石油设施置于射程之内。研究结果可用于预测Samad无人机可在攻击中部署的位置。此外,当非国家行为者使用这种类型的无人机时,它提供了对日益增加的威胁的见解。本研究开发的方法和工具可用于分析具有类似配置的其他无人机的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flight Performance Analysis of the Samad Attack Drones Operated by Houthi Armed Forces
Abstract In recent years, there has been a large increase in the use of uncrewed attack aircraft, or attack drones, in the Yemen conflict. At the same time, the flight endurance and payload capabilities of these uncrewed aerial vehicles seem to have increased significantly. This article presents a flight performance analysis of the Samad aircraft family operated by Ansar Allah, the Houthi rebel movement. The analysis is based on information available in the public domain and accounts for modeling uncertainties, and terrain under weather conditions typical for Yemen and Saudi Arabia. With only limited data available in the form of images, the analysis method assesses the flight performance of fixed-wing attack aircraft with high aspect ratio wings and powered by piston engines and propellers. Results demonstrate that it is highly unlikely that the Samad-2 version could reach strategic locations in Saudi Arabia when launched from Houthi-controlled territory. The analysis shows that Samad-3, however, can achieve a flight range in excess of 1800 km, bringing Riyadh and oil installations near the Persian Gulf into reach. The results of the study can be used to predict the locations from which the Samad UAV can be deployed in an attack. Furthermore, it gives insight into the increasing threat of this type of UAV when employed by non-state actors. The methods and tools developed in this study can be used to analyze the capabilities of other UAV with similar configurations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science & Global Security
Science & Global Security INTERNATIONAL RELATIONS-
CiteScore
1.00
自引率
14.30%
发文量
8
期刊最新文献
Utilizing a Virtual Sodium-Cooled Fast Reactor Digital Twin to Aid in Diversion Pathway Analysis for International Safeguards Applications Editors’ Note Plutonium Production under Uranium Constraint Hypersonic Weapons: Vulnerability to Missile Defenses and Comparison to MaRVs Ceci N’est Pas Une Bombe: Lessons from a Field Experiment Using Neutron and Gamma Measurements to Confirm the Absence of Nuclear Weapons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1