{"title":"光伏应用中的水凝胶介导半导体键合","authors":"Kodai Kishibe, K. Tanabe","doi":"10.1109/PVSC40753.2019.8980663","DOIUrl":null,"url":null,"abstract":"Hydrogel-mediated semiconductor wafer bonding has been demonstrated for low-cost fabrication of high-efficiency lattice-mismatched multijunction solar cells. Wafer direct bonding can be hardly applied in the presence of wafer surface roughness or particles. Our hydrogel bonding scheme benefits from high surface roughness and particulate tolerances, optical transmittance, and electrical conductivity by utilizing the hydrogels' versatile properties suitable particularly for photovoltaic applications. We have investigated three types of hydrogels and all of them exhibit sufficient transmittance, bonding strength, and conductivity for the fabrication of highefficiency multijunction solar cells.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"43 1","pages":"2185-2187"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogel-Mediated Semiconductor Bonding for Photovoltaic Applications\",\"authors\":\"Kodai Kishibe, K. Tanabe\",\"doi\":\"10.1109/PVSC40753.2019.8980663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrogel-mediated semiconductor wafer bonding has been demonstrated for low-cost fabrication of high-efficiency lattice-mismatched multijunction solar cells. Wafer direct bonding can be hardly applied in the presence of wafer surface roughness or particles. Our hydrogel bonding scheme benefits from high surface roughness and particulate tolerances, optical transmittance, and electrical conductivity by utilizing the hydrogels' versatile properties suitable particularly for photovoltaic applications. We have investigated three types of hydrogels and all of them exhibit sufficient transmittance, bonding strength, and conductivity for the fabrication of highefficiency multijunction solar cells.\",\"PeriodicalId\":6749,\"journal\":{\"name\":\"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)\",\"volume\":\"43 1\",\"pages\":\"2185-2187\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC40753.2019.8980663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC40753.2019.8980663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hydrogel-Mediated Semiconductor Bonding for Photovoltaic Applications
Hydrogel-mediated semiconductor wafer bonding has been demonstrated for low-cost fabrication of high-efficiency lattice-mismatched multijunction solar cells. Wafer direct bonding can be hardly applied in the presence of wafer surface roughness or particles. Our hydrogel bonding scheme benefits from high surface roughness and particulate tolerances, optical transmittance, and electrical conductivity by utilizing the hydrogels' versatile properties suitable particularly for photovoltaic applications. We have investigated three types of hydrogels and all of them exhibit sufficient transmittance, bonding strength, and conductivity for the fabrication of highefficiency multijunction solar cells.