采用0.18μm CMOS差分调节抑制比增强的110dB-CMRR 100dB-PSRR多通道神经记录放大器系统

Sehwan Lee, Arup K. George, Taeju Lee, Jun-Uk Chu, Sungmin Han, Ji-Hoon Kim, M. Je, Junghyup Lee
{"title":"采用0.18μm CMOS差分调节抑制比增强的110dB-CMRR 100dB-PSRR多通道神经记录放大器系统","authors":"Sehwan Lee, Arup K. George, Taeju Lee, Jun-Uk Chu, Sungmin Han, Ji-Hoon Kim, M. Je, Junghyup Lee","doi":"10.1109/ISSCC.2018.8310389","DOIUrl":null,"url":null,"abstract":"Multi-channel neural-recording amplifier systems have evolved into the method of choice for analyzing neurophysiological behavior, and are leading to a deeper understanding of the human brain [1-4]. Such systems operate from a noisy supply and ground, especially when they are powered wirelessly. As shown in Fig. 29.7.1, the amplifiers ought to be low-noise, low-power, and resilient against environmental noise and interferences that are capacitively coupled from the power lines (220V/60Hz). Specifications-wise, these requirements translate into high CMRR, TCMRR, and PSRR. TCMRR (total CMRR) is a more realistic specification than CMRR as it includes the effect of the impedances of both electrodes (Ze) and the amplifier input (ZCin) as well. In fact, the TCMRR should be >70dB for reliable detection of a 5μVrms neural signal [1].","PeriodicalId":6617,"journal":{"name":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","volume":"7 1","pages":"472-474"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A 110dB-CMRR 100dB-PSRR multi-channel neural-recording amplifier system using differentially regulated rejection ratio enhancement in 0.18μm CMOS\",\"authors\":\"Sehwan Lee, Arup K. George, Taeju Lee, Jun-Uk Chu, Sungmin Han, Ji-Hoon Kim, M. Je, Junghyup Lee\",\"doi\":\"10.1109/ISSCC.2018.8310389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-channel neural-recording amplifier systems have evolved into the method of choice for analyzing neurophysiological behavior, and are leading to a deeper understanding of the human brain [1-4]. Such systems operate from a noisy supply and ground, especially when they are powered wirelessly. As shown in Fig. 29.7.1, the amplifiers ought to be low-noise, low-power, and resilient against environmental noise and interferences that are capacitively coupled from the power lines (220V/60Hz). Specifications-wise, these requirements translate into high CMRR, TCMRR, and PSRR. TCMRR (total CMRR) is a more realistic specification than CMRR as it includes the effect of the impedances of both electrodes (Ze) and the amplifier input (ZCin) as well. In fact, the TCMRR should be >70dB for reliable detection of a 5μVrms neural signal [1].\",\"PeriodicalId\":6617,\"journal\":{\"name\":\"2018 IEEE International Solid - State Circuits Conference - (ISSCC)\",\"volume\":\"7 1\",\"pages\":\"472-474\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Solid - State Circuits Conference - (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2018.8310389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2018.8310389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

多通道神经记录放大器系统已经发展成为分析神经生理行为的首选方法,并导致对人类大脑的更深层次的理解[1-4]。这样的系统在嘈杂的电源和地面上运行,尤其是在无线供电的情况下。如图29.7.1所示,放大器应该是低噪声、低功耗的,并且能够抵御来自电源线(220V/60Hz)电容耦合的环境噪声和干扰。在规范方面,这些需求转化为高CMRR、TCMRR和PSRR。TCMRR(总CMRR)是一个比CMRR更现实的规格,因为它包括两个电极(Ze)和放大器输入(ZCin)的阻抗的影响。实际上,为了可靠地检测5μVrms的神经信号,TCMRR应该>70dB[1]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A 110dB-CMRR 100dB-PSRR multi-channel neural-recording amplifier system using differentially regulated rejection ratio enhancement in 0.18μm CMOS
Multi-channel neural-recording amplifier systems have evolved into the method of choice for analyzing neurophysiological behavior, and are leading to a deeper understanding of the human brain [1-4]. Such systems operate from a noisy supply and ground, especially when they are powered wirelessly. As shown in Fig. 29.7.1, the amplifiers ought to be low-noise, low-power, and resilient against environmental noise and interferences that are capacitively coupled from the power lines (220V/60Hz). Specifications-wise, these requirements translate into high CMRR, TCMRR, and PSRR. TCMRR (total CMRR) is a more realistic specification than CMRR as it includes the effect of the impedances of both electrodes (Ze) and the amplifier input (ZCin) as well. In fact, the TCMRR should be >70dB for reliable detection of a 5μVrms neural signal [1].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EE1: Student research preview (SRP) A 512Gb 3b/Cell 3D flash memory on a 96-word-line-layer technology Single-chip reduced-wire active catheter system with programmable transmit beamforming and receive time-division multiplexing for intracardiac echocardiography A 2.5nJ duty-cycled bridge-to-digital converter integrated in a 13mm3 pressure-sensing system A 36.3-to-38.2GHz −216dBc/Hz2 40nm CMOS fractional-N FMCW chirp synthesizer PLL with a continuous-time bandpass delta-sigma time-to-digital converter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1