基于热力学的自组织网络控制鲁棒性与性能平衡策略

Takuya Iwai, D. Kominami, M. Murata, T. Yomo
{"title":"基于热力学的自组织网络控制鲁棒性与性能平衡策略","authors":"Takuya Iwai, D. Kominami, M. Murata, T. Yomo","doi":"10.1109/SASO.2014.34","DOIUrl":null,"url":null,"abstract":"Bio-inspired network controls are driven by the competition between their ordering force and disordering force. Both forces simultaneously affect their performance and robustness. Therefore, we must carefully determine their balance. In this paper, we focus on thermodynamic phenomena where a substance achieves the balance between both forces depending on its temperature. We translate bio-inspired network controls from the perspective of thermodynamics, and we analytically show that the appropriate balance between both forces can be achieved by selecting appropriate temperature.","PeriodicalId":6458,"journal":{"name":"2014 IEEE Eighth International Conference on Self-Adaptive and Self-Organizing Systems Workshops","volume":"1 1","pages":"181-182"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamics-Based Strategy to Achieve Balance between Robustness and Performance for Self-Organized Network Controls\",\"authors\":\"Takuya Iwai, D. Kominami, M. Murata, T. Yomo\",\"doi\":\"10.1109/SASO.2014.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bio-inspired network controls are driven by the competition between their ordering force and disordering force. Both forces simultaneously affect their performance and robustness. Therefore, we must carefully determine their balance. In this paper, we focus on thermodynamic phenomena where a substance achieves the balance between both forces depending on its temperature. We translate bio-inspired network controls from the perspective of thermodynamics, and we analytically show that the appropriate balance between both forces can be achieved by selecting appropriate temperature.\",\"PeriodicalId\":6458,\"journal\":{\"name\":\"2014 IEEE Eighth International Conference on Self-Adaptive and Self-Organizing Systems Workshops\",\"volume\":\"1 1\",\"pages\":\"181-182\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Eighth International Conference on Self-Adaptive and Self-Organizing Systems Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SASO.2014.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Eighth International Conference on Self-Adaptive and Self-Organizing Systems Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASO.2014.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

仿生网络控制是由有序力和无序力之间的竞争驱动的。这两种力同时影响它们的性能和鲁棒性。因此,我们必须仔细确定它们的平衡。在本文中,我们关注的是一种热力学现象,即一种物质根据其温度在两种力之间达到平衡。我们从热力学的角度翻译了仿生网络控制,并分析表明,通过选择合适的温度可以实现两种力之间的适当平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermodynamics-Based Strategy to Achieve Balance between Robustness and Performance for Self-Organized Network Controls
Bio-inspired network controls are driven by the competition between their ordering force and disordering force. Both forces simultaneously affect their performance and robustness. Therefore, we must carefully determine their balance. In this paper, we focus on thermodynamic phenomena where a substance achieves the balance between both forces depending on its temperature. We translate bio-inspired network controls from the perspective of thermodynamics, and we analytically show that the appropriate balance between both forces can be achieved by selecting appropriate temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prosumers as Aggregators in the DEZENT Context of Regenerative Power Production A Hybrid Cross-Entropy Cognitive-Based Algorithm for Resource Allocation in Cloud Environments Artificial Immune System Driven Evolution in Swarm Chemistry Towards an Agent-Based Simulation Model for Schema Matching A Graph Analysis Approach to Detect Attacks in Multi-agent Systems at Runtime
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1