Jinjin Song, Yan Li, Xitong Guo, K. Shen, Xiaofeng Ju
{"title":"使移动医疗信息建议具有说服力:一个细化可能性模型的视角","authors":"Jinjin Song, Yan Li, Xitong Guo, K. Shen, Xiaofeng Ju","doi":"10.4018/joeuc.287573","DOIUrl":null,"url":null,"abstract":"As M-Health apps become more popular, users can access more mobile health information (MHI) through these platforms. Yet one preeminent question among both researchers and practitioners is how to bridge the gap between simply providing MHI and persuading users to buy into the MHI for health self-management. To solve this challenge, this study extends the Elaboration Likelihood Model to explore how to make MHI advice persuasive by identifying the important central and peripheral cues of MHI under individual difference. The proposed research model was validated through a survey. The results confirm that (1) both information matching and platform credibility, as central and peripheral cues, respectively, have significant positive effects on attitudes toward MHI, but only information matching could directly affect health behavior changes; (2) health concern significantly moderates the link between information matching and cognitive attitude and only marginally moderates the link between platform credibility and attitudes. Theoretical and practical implications are also discussed.","PeriodicalId":49029,"journal":{"name":"Journal of Organizational and End User Computing","volume":"248 1","pages":"1-22"},"PeriodicalIF":3.6000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Making Mobile Health Information Advice Persuasive: An Elaboration Likelihood Model Perspective\",\"authors\":\"Jinjin Song, Yan Li, Xitong Guo, K. Shen, Xiaofeng Ju\",\"doi\":\"10.4018/joeuc.287573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As M-Health apps become more popular, users can access more mobile health information (MHI) through these platforms. Yet one preeminent question among both researchers and practitioners is how to bridge the gap between simply providing MHI and persuading users to buy into the MHI for health self-management. To solve this challenge, this study extends the Elaboration Likelihood Model to explore how to make MHI advice persuasive by identifying the important central and peripheral cues of MHI under individual difference. The proposed research model was validated through a survey. The results confirm that (1) both information matching and platform credibility, as central and peripheral cues, respectively, have significant positive effects on attitudes toward MHI, but only information matching could directly affect health behavior changes; (2) health concern significantly moderates the link between information matching and cognitive attitude and only marginally moderates the link between platform credibility and attitudes. Theoretical and practical implications are also discussed.\",\"PeriodicalId\":49029,\"journal\":{\"name\":\"Journal of Organizational and End User Computing\",\"volume\":\"248 1\",\"pages\":\"1-22\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Organizational and End User Computing\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.4018/joeuc.287573\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organizational and End User Computing","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.4018/joeuc.287573","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Making Mobile Health Information Advice Persuasive: An Elaboration Likelihood Model Perspective
As M-Health apps become more popular, users can access more mobile health information (MHI) through these platforms. Yet one preeminent question among both researchers and practitioners is how to bridge the gap between simply providing MHI and persuading users to buy into the MHI for health self-management. To solve this challenge, this study extends the Elaboration Likelihood Model to explore how to make MHI advice persuasive by identifying the important central and peripheral cues of MHI under individual difference. The proposed research model was validated through a survey. The results confirm that (1) both information matching and platform credibility, as central and peripheral cues, respectively, have significant positive effects on attitudes toward MHI, but only information matching could directly affect health behavior changes; (2) health concern significantly moderates the link between information matching and cognitive attitude and only marginally moderates the link between platform credibility and attitudes. Theoretical and practical implications are also discussed.
期刊介绍:
The Journal of Organizational and End User Computing (JOEUC) provides a forum to information technology educators, researchers, and practitioners to advance the practice and understanding of organizational and end user computing. The journal features a major emphasis on how to increase organizational and end user productivity and performance, and how to achieve organizational strategic and competitive advantage. JOEUC publishes full-length research manuscripts, insightful research and practice notes, and case studies from all areas of organizational and end user computing that are selected after a rigorous blind review by experts in the field.