{"title":"比较了不同类型的脉冲电流对氧化锌压敏电阻降解的影响","authors":"Weikang Li, X. Yao, Jinru Sun, Qingqing Li, Hao Wang, Xin Zhu","doi":"10.1109/ICHVE49031.2020.9279444","DOIUrl":null,"url":null,"abstract":"To compare different types of impulse currents on the degradation of Zinc-oxide varistors, 2 milliseconds square wave and 10/1000 microseconds impact current with the same impact energy were respectively applied to the same type of ZnO varistor samples. The three characteristic parameters' trends of samples with a diameter of 20 millimeters after multiple pulses are different, and the sample after 940 times impacts by 2 milliseconds square wave with an amplitude of 160 amperes remained intact, while the one exploded after 499 times impacts by 10/1000 microseconds impact current with an amplitude of 260 amperes. And the microstructure of samples with a diameter of 10 millimeters after the single pulse by using scanning electron microscopy (SEM) are observed. We find that with the same impact energy, the damage degree of 10/1000 microseconds impact current on ZnO varistor is relatively greater than that of 2 milliseconds square wave, which is more likely to cause the deterioration and aging of ZnO varistors.","PeriodicalId":6763,"journal":{"name":"2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE)","volume":"121 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparison with the influence of different types of impulse currents on the degradation of Zinc-oxide varistors\",\"authors\":\"Weikang Li, X. Yao, Jinru Sun, Qingqing Li, Hao Wang, Xin Zhu\",\"doi\":\"10.1109/ICHVE49031.2020.9279444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To compare different types of impulse currents on the degradation of Zinc-oxide varistors, 2 milliseconds square wave and 10/1000 microseconds impact current with the same impact energy were respectively applied to the same type of ZnO varistor samples. The three characteristic parameters' trends of samples with a diameter of 20 millimeters after multiple pulses are different, and the sample after 940 times impacts by 2 milliseconds square wave with an amplitude of 160 amperes remained intact, while the one exploded after 499 times impacts by 10/1000 microseconds impact current with an amplitude of 260 amperes. And the microstructure of samples with a diameter of 10 millimeters after the single pulse by using scanning electron microscopy (SEM) are observed. We find that with the same impact energy, the damage degree of 10/1000 microseconds impact current on ZnO varistor is relatively greater than that of 2 milliseconds square wave, which is more likely to cause the deterioration and aging of ZnO varistors.\",\"PeriodicalId\":6763,\"journal\":{\"name\":\"2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE)\",\"volume\":\"121 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHVE49031.2020.9279444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHVE49031.2020.9279444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison with the influence of different types of impulse currents on the degradation of Zinc-oxide varistors
To compare different types of impulse currents on the degradation of Zinc-oxide varistors, 2 milliseconds square wave and 10/1000 microseconds impact current with the same impact energy were respectively applied to the same type of ZnO varistor samples. The three characteristic parameters' trends of samples with a diameter of 20 millimeters after multiple pulses are different, and the sample after 940 times impacts by 2 milliseconds square wave with an amplitude of 160 amperes remained intact, while the one exploded after 499 times impacts by 10/1000 microseconds impact current with an amplitude of 260 amperes. And the microstructure of samples with a diameter of 10 millimeters after the single pulse by using scanning electron microscopy (SEM) are observed. We find that with the same impact energy, the damage degree of 10/1000 microseconds impact current on ZnO varistor is relatively greater than that of 2 milliseconds square wave, which is more likely to cause the deterioration and aging of ZnO varistors.