{"title":"Helio:实现知识图谱生命周期的框架","authors":"Andrea Cimmino, R. García-Castro","doi":"10.3233/sw-233224","DOIUrl":null,"url":null,"abstract":"Building and publishing knowledge graphs (KG) as Linked Data, either on the Web or in private companies, has become a relevant and crucial process in many domains. This process requires that users perform a wide number of tasks conforming to the life cycle of a KG, and these tasks usually involve different unrelated research topics, such as RDF materialisation or link discovery. There is already a large corpus of tools and methods designed to perform these tasks; however, the lack of one tool that gathers them all leads practitioners to develop ad-hoc pipelines that are not generic and, thus, non-reusable. As a result, building and publishing a KG is becoming a complex and resource-consuming process. In this paper, a generic framework called Helio is presented. The framework aims to cover a set of requirements elicited from the KG life cycle and provide a tool capable of performing the different tasks required to build and publish KGs. As a result, Helio aims at providing users with the means for reducing the effort required to perform this process and, also, Helio aims to prevent the development of ad-hoc pipelines. Furthermore, the Helio framework has been applied in many different contexts, from European projects to research work.","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":"40 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Helio: A framework for implementing the life cycle of knowledge graphs\",\"authors\":\"Andrea Cimmino, R. García-Castro\",\"doi\":\"10.3233/sw-233224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Building and publishing knowledge graphs (KG) as Linked Data, either on the Web or in private companies, has become a relevant and crucial process in many domains. This process requires that users perform a wide number of tasks conforming to the life cycle of a KG, and these tasks usually involve different unrelated research topics, such as RDF materialisation or link discovery. There is already a large corpus of tools and methods designed to perform these tasks; however, the lack of one tool that gathers them all leads practitioners to develop ad-hoc pipelines that are not generic and, thus, non-reusable. As a result, building and publishing a KG is becoming a complex and resource-consuming process. In this paper, a generic framework called Helio is presented. The framework aims to cover a set of requirements elicited from the KG life cycle and provide a tool capable of performing the different tasks required to build and publish KGs. As a result, Helio aims at providing users with the means for reducing the effort required to perform this process and, also, Helio aims to prevent the development of ad-hoc pipelines. Furthermore, the Helio framework has been applied in many different contexts, from European projects to research work.\",\"PeriodicalId\":48694,\"journal\":{\"name\":\"Semantic Web\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semantic Web\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/sw-233224\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/sw-233224","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Helio: A framework for implementing the life cycle of knowledge graphs
Building and publishing knowledge graphs (KG) as Linked Data, either on the Web or in private companies, has become a relevant and crucial process in many domains. This process requires that users perform a wide number of tasks conforming to the life cycle of a KG, and these tasks usually involve different unrelated research topics, such as RDF materialisation or link discovery. There is already a large corpus of tools and methods designed to perform these tasks; however, the lack of one tool that gathers them all leads practitioners to develop ad-hoc pipelines that are not generic and, thus, non-reusable. As a result, building and publishing a KG is becoming a complex and resource-consuming process. In this paper, a generic framework called Helio is presented. The framework aims to cover a set of requirements elicited from the KG life cycle and provide a tool capable of performing the different tasks required to build and publish KGs. As a result, Helio aims at providing users with the means for reducing the effort required to perform this process and, also, Helio aims to prevent the development of ad-hoc pipelines. Furthermore, the Helio framework has been applied in many different contexts, from European projects to research work.
Semantic WebCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍:
The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.