{"title":"支持智能制造中计算模型生命周期活动的知识丰富计算模型","authors":"Heng Zhang, U. Roy","doi":"10.1520/SSMS20180036","DOIUrl":null,"url":null,"abstract":"Due to the needs in supporting lifecycle activities of computational models in Smart Manufacturing (SM), a Knowledge Enriched Computational Model (KECM) is proposed in this dissertation to capture and integrate domain knowledge with standardized computational models. The KECM captures domain knowledge into information model(s), physics-based model(s), and rationales. To support model development in a distributed environment, the KECM can be used as the medium for formal information sharing between model developers. A case study has been developed to demonstrate the utilization of the KECM in supporting the construction of a Bayesian Network model. To support the deployment of computational models in SM systems, the KECM can be used for data integration between computational models and SM systems. A case study has been developed to show the deployment of a Constraint Programming optimization model into a Business To Manufacturing Markup Language (B2MML) -based system. In another situation where multiple computational models need to be deployed, the KECM can be used to support the combination of computational models. A case study has been developed to show the combination of an Agent-based model and a Decision Tree model using the KECM. To support model retrieval, a semantics-based method is suggested in this dissertation. As an example, a dispatching rule model retrieval problem has been addressed with a semantics-based approach. The semantics-based approach has been verified and it demonstrates good capability in using the KECM to retrieve computational models. A KNOWLEDGE ENRICHED COMPUTATIONAL MODEL TO SUPPORT LIFECYCLE ACTIVITIES OF COMPUTATIONAL MODELS IN SMART MANUFACTURING","PeriodicalId":51957,"journal":{"name":"Smart and Sustainable Manufacturing Systems","volume":"14 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Knowledge-Enriched Computational Model to Support Lifecycle Activities of Computational Models in Smart Manufacturing\",\"authors\":\"Heng Zhang, U. Roy\",\"doi\":\"10.1520/SSMS20180036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the needs in supporting lifecycle activities of computational models in Smart Manufacturing (SM), a Knowledge Enriched Computational Model (KECM) is proposed in this dissertation to capture and integrate domain knowledge with standardized computational models. The KECM captures domain knowledge into information model(s), physics-based model(s), and rationales. To support model development in a distributed environment, the KECM can be used as the medium for formal information sharing between model developers. A case study has been developed to demonstrate the utilization of the KECM in supporting the construction of a Bayesian Network model. To support the deployment of computational models in SM systems, the KECM can be used for data integration between computational models and SM systems. A case study has been developed to show the deployment of a Constraint Programming optimization model into a Business To Manufacturing Markup Language (B2MML) -based system. In another situation where multiple computational models need to be deployed, the KECM can be used to support the combination of computational models. A case study has been developed to show the combination of an Agent-based model and a Decision Tree model using the KECM. To support model retrieval, a semantics-based method is suggested in this dissertation. As an example, a dispatching rule model retrieval problem has been addressed with a semantics-based approach. The semantics-based approach has been verified and it demonstrates good capability in using the KECM to retrieve computational models. A KNOWLEDGE ENRICHED COMPUTATIONAL MODEL TO SUPPORT LIFECYCLE ACTIVITIES OF COMPUTATIONAL MODELS IN SMART MANUFACTURING\",\"PeriodicalId\":51957,\"journal\":{\"name\":\"Smart and Sustainable Manufacturing Systems\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart and Sustainable Manufacturing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1520/SSMS20180036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart and Sustainable Manufacturing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/SSMS20180036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
A Knowledge-Enriched Computational Model to Support Lifecycle Activities of Computational Models in Smart Manufacturing
Due to the needs in supporting lifecycle activities of computational models in Smart Manufacturing (SM), a Knowledge Enriched Computational Model (KECM) is proposed in this dissertation to capture and integrate domain knowledge with standardized computational models. The KECM captures domain knowledge into information model(s), physics-based model(s), and rationales. To support model development in a distributed environment, the KECM can be used as the medium for formal information sharing between model developers. A case study has been developed to demonstrate the utilization of the KECM in supporting the construction of a Bayesian Network model. To support the deployment of computational models in SM systems, the KECM can be used for data integration between computational models and SM systems. A case study has been developed to show the deployment of a Constraint Programming optimization model into a Business To Manufacturing Markup Language (B2MML) -based system. In another situation where multiple computational models need to be deployed, the KECM can be used to support the combination of computational models. A case study has been developed to show the combination of an Agent-based model and a Decision Tree model using the KECM. To support model retrieval, a semantics-based method is suggested in this dissertation. As an example, a dispatching rule model retrieval problem has been addressed with a semantics-based approach. The semantics-based approach has been verified and it demonstrates good capability in using the KECM to retrieve computational models. A KNOWLEDGE ENRICHED COMPUTATIONAL MODEL TO SUPPORT LIFECYCLE ACTIVITIES OF COMPUTATIONAL MODELS IN SMART MANUFACTURING