基于β-环糊精的聚(n-异丙基丙烯酰胺)星形聚合物的支化分析

IF 1.7 4区 工程技术 Q4 POLYMER SCIENCE International Journal of Polymer Analysis and Characterization Pub Date : 2022-10-01 DOI:10.1080/1023666X.2022.2110133
Artjom Herberg , Dirk Kuckling
{"title":"基于β-环糊精的聚(n-异丙基丙烯酰胺)星形聚合物的支化分析","authors":"Artjom Herberg ,&nbsp;Dirk Kuckling","doi":"10.1080/1023666X.2022.2110133","DOIUrl":null,"url":null,"abstract":"<div><p>For the first time, poly(<em>N</em>-isopropylacrylamide) (PNIPAAm) star polymers with a β-cyclodextrin core are characterized in detail by size-exclusion chromatography (SEC) with triple detection to experimentally verify the number of arms. A combination of a refractive index detector, multi-angle laser light scattering detector, and an online-viscosimeter was used for branching analysis. At first, the SEC system was calibrated and the detector setup was validated using linear polystyrene reference polymers. The applicability of the established triple detection SEC for branching analysis was shown by the analysis of two commercially available polystyrene star polymers. Due to the high molar masses of the star polymers, both the contraction ratio <em>g</em> and <em>g</em>′ could be determined independently, thus allowing the calculation of the viscosity shielding ratio <em>ε</em>. Finally, the branching analysis of the PNIPAAm star polymers could experimentally confirm the assumed arm number of up to 21 arms. Moreover, an increasingly compact molecular structure and the influence of the arm number on the viscosity shielding ratio could be shown.</p></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Branching analysis of β-cyclodextrin-based poly(N-isopropylacrylamide) star polymers using triple detection SEC\",\"authors\":\"Artjom Herberg ,&nbsp;Dirk Kuckling\",\"doi\":\"10.1080/1023666X.2022.2110133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For the first time, poly(<em>N</em>-isopropylacrylamide) (PNIPAAm) star polymers with a β-cyclodextrin core are characterized in detail by size-exclusion chromatography (SEC) with triple detection to experimentally verify the number of arms. A combination of a refractive index detector, multi-angle laser light scattering detector, and an online-viscosimeter was used for branching analysis. At first, the SEC system was calibrated and the detector setup was validated using linear polystyrene reference polymers. The applicability of the established triple detection SEC for branching analysis was shown by the analysis of two commercially available polystyrene star polymers. Due to the high molar masses of the star polymers, both the contraction ratio <em>g</em> and <em>g</em>′ could be determined independently, thus allowing the calculation of the viscosity shielding ratio <em>ε</em>. Finally, the branching analysis of the PNIPAAm star polymers could experimentally confirm the assumed arm number of up to 21 arms. Moreover, an increasingly compact molecular structure and the influence of the arm number on the viscosity shielding ratio could be shown.</p></div>\",\"PeriodicalId\":14236,\"journal\":{\"name\":\"International Journal of Polymer Analysis and Characterization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Polymer Analysis and Characterization\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1023666X23000148\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Analysis and Characterization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1023666X23000148","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文首次采用三次检测的尺寸排除色谱法(SEC)对具有β-环糊精核的聚(n -异丙基丙烯酰胺)(PNIPAAm)星形聚合物进行了详细的表征。采用折射率检测器、多角度激光散射检测器和在线粘度计组合进行分支分析。首先,对SEC系统进行了校准,并使用线性聚苯乙烯参考聚合物对检测器设置进行了验证。通过对两种市售聚苯乙烯星形聚合物的分析,证明了所建立的三重检测SEC在支化分析中的适用性。由于星形聚合物的摩尔质量较高,因此可以独立确定收缩比g和g ',从而计算粘度屏蔽比ε。最后,通过对PNIPAAm星形聚合物的支链分析,实验证实了PNIPAAm星形聚合物有21个支链。此外,分子结构越来越紧凑,臂数对粘度屏蔽比的影响也越来越大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Branching analysis of β-cyclodextrin-based poly(N-isopropylacrylamide) star polymers using triple detection SEC

For the first time, poly(N-isopropylacrylamide) (PNIPAAm) star polymers with a β-cyclodextrin core are characterized in detail by size-exclusion chromatography (SEC) with triple detection to experimentally verify the number of arms. A combination of a refractive index detector, multi-angle laser light scattering detector, and an online-viscosimeter was used for branching analysis. At first, the SEC system was calibrated and the detector setup was validated using linear polystyrene reference polymers. The applicability of the established triple detection SEC for branching analysis was shown by the analysis of two commercially available polystyrene star polymers. Due to the high molar masses of the star polymers, both the contraction ratio g and g′ could be determined independently, thus allowing the calculation of the viscosity shielding ratio ε. Finally, the branching analysis of the PNIPAAm star polymers could experimentally confirm the assumed arm number of up to 21 arms. Moreover, an increasingly compact molecular structure and the influence of the arm number on the viscosity shielding ratio could be shown.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
37
审稿时长
1.6 months
期刊介绍: The scope of the journal is to publish original contributions and reviews on studies, methodologies, instrumentation, and applications involving the analysis and characterization of polymers and polymeric-based materials, including synthetic polymers, blends, composites, fibers, coatings, supramolecular structures, polysaccharides, and biopolymers. The Journal will accept papers and review articles on the following topics and research areas involving fundamental and applied studies of polymer analysis and characterization: Characterization and analysis of new and existing polymers and polymeric-based materials. Design and evaluation of analytical instrumentation and physical testing equipment. Determination of molecular weight, size, conformation, branching, cross-linking, chemical structure, and sequence distribution. Using separation, spectroscopic, and scattering techniques. Surface characterization of polymeric materials. Measurement of solution and bulk properties and behavior of polymers. Studies involving structure-property-processing relationships, and polymer aging. Analysis of oligomeric materials. Analysis of polymer additives and decomposition products.
期刊最新文献
Effect of titanium dioxide nanoparticles on the dielectric, thermal, and corrosion resistance properties of polyimide (PI) nanocomposites Improving flame resistance and shielding properties for cross-linked polyethylene (XLPE) using nanoclay filler Effect of heat treatment on charge states, thermophysical and mechanical properties of polypropylene doped with ZrO2 nanoparticles Hematite (Fe2O3)-modified biopolymer for Rhodamine B degradation under visible light Response surface methodology-based preparation of sago starch bioplastic film for food packaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1