Driely Candido Santos, M. Lopes, F. Chavarette, Bruno Ferreira Rossanês
{"title":"采用基于负选择算法的数据分析方法监测动态系统的故障","authors":"Driely Candido Santos, M. Lopes, F. Chavarette, Bruno Ferreira Rossanês","doi":"10.5747/ce.2021.v13.n2.e361","DOIUrl":null,"url":null,"abstract":"This work presents the application of a method for monitoring and diagnosing failures in mechanical structures based on the theory of vibration signals and on Artificial Immune Systems to assist in data processing. It uses the Negative Selection Algorithm as a tool to identify fault samples extracted from the laboratory simulated signals of a dynamic rotor. This methodology can help mechanical structure maintenance professionals, facilitating decision-making. The data set used in the processing of the intelligent system was generated through experiments. For normal (base-line) conditions, the signals of the rotor in free operation were used, that is, without the addition of unbalance mass, and for the fault conditions, unbalance masses were added to the system. The results are satisfactory, showing precision and robustness.","PeriodicalId":30414,"journal":{"name":"Colloquium Exactarum","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MONITORAMENTO DE FALHAS EM SISTEMAS DINÂMICOS UTILIZANDO UM MÉTODO DE ANÁLISE DE DADOS BASEADO NO ALGORITMO DE SELEÇÃO NEGATIVA\",\"authors\":\"Driely Candido Santos, M. Lopes, F. Chavarette, Bruno Ferreira Rossanês\",\"doi\":\"10.5747/ce.2021.v13.n2.e361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents the application of a method for monitoring and diagnosing failures in mechanical structures based on the theory of vibration signals and on Artificial Immune Systems to assist in data processing. It uses the Negative Selection Algorithm as a tool to identify fault samples extracted from the laboratory simulated signals of a dynamic rotor. This methodology can help mechanical structure maintenance professionals, facilitating decision-making. The data set used in the processing of the intelligent system was generated through experiments. For normal (base-line) conditions, the signals of the rotor in free operation were used, that is, without the addition of unbalance mass, and for the fault conditions, unbalance masses were added to the system. The results are satisfactory, showing precision and robustness.\",\"PeriodicalId\":30414,\"journal\":{\"name\":\"Colloquium Exactarum\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloquium Exactarum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5747/ce.2021.v13.n2.e361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloquium Exactarum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5747/ce.2021.v13.n2.e361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MONITORAMENTO DE FALHAS EM SISTEMAS DINÂMICOS UTILIZANDO UM MÉTODO DE ANÁLISE DE DADOS BASEADO NO ALGORITMO DE SELEÇÃO NEGATIVA
This work presents the application of a method for monitoring and diagnosing failures in mechanical structures based on the theory of vibration signals and on Artificial Immune Systems to assist in data processing. It uses the Negative Selection Algorithm as a tool to identify fault samples extracted from the laboratory simulated signals of a dynamic rotor. This methodology can help mechanical structure maintenance professionals, facilitating decision-making. The data set used in the processing of the intelligent system was generated through experiments. For normal (base-line) conditions, the signals of the rotor in free operation were used, that is, without the addition of unbalance mass, and for the fault conditions, unbalance masses were added to the system. The results are satisfactory, showing precision and robustness.