{"title":"基于广义双鲁棒贝叶斯模型平均法的因果效应估计及其在骨质疏松性骨折研究中的应用","authors":"D. Talbot, C. Beaudoin","doi":"10.1515/jci-2021-0023","DOIUrl":null,"url":null,"abstract":"Abstract Analysts often use data-driven approaches to supplement their knowledge when selecting covariates for effect estimation. Multiple variable selection procedures for causal effect estimation have been devised in recent years, but additional developments are still required to adequately address the needs of analysts. We propose a generalized Bayesian causal effect estimation (GBCEE) algorithm to perform variable selection and produce double robust (DR) estimates of causal effects for binary or continuous exposures and outcomes. GBCEE employs a prior distribution that targets the selection of true confounders and predictors of the outcome for the unbiased estimation of causal effects with reduced standard errors. The Bayesian machinery allows GBCEE to directly produce inferences for its estimate. In simulations, GBCEE was observed to perform similarly or to outperform DR alternatives. Its ability to directly produce inferences is also an important advantage from a computational perspective. The method is finally illustrated for the estimation of the effect of meeting physical activity recommendations on the risk of hip or upper-leg fractures among older women in the study of osteoporotic fractures. The 95% confidence interval produced by GBCEE is 61% narrower than that of a DR estimator adjusting for all potential confounders in this illustration.","PeriodicalId":48576,"journal":{"name":"Journal of Causal Inference","volume":"3 1","pages":"335 - 371"},"PeriodicalIF":1.7000,"publicationDate":"2020-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A generalized double robust Bayesian model averaging approach to causal effect estimation with application to the study of osteoporotic fractures\",\"authors\":\"D. Talbot, C. Beaudoin\",\"doi\":\"10.1515/jci-2021-0023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Analysts often use data-driven approaches to supplement their knowledge when selecting covariates for effect estimation. Multiple variable selection procedures for causal effect estimation have been devised in recent years, but additional developments are still required to adequately address the needs of analysts. We propose a generalized Bayesian causal effect estimation (GBCEE) algorithm to perform variable selection and produce double robust (DR) estimates of causal effects for binary or continuous exposures and outcomes. GBCEE employs a prior distribution that targets the selection of true confounders and predictors of the outcome for the unbiased estimation of causal effects with reduced standard errors. The Bayesian machinery allows GBCEE to directly produce inferences for its estimate. In simulations, GBCEE was observed to perform similarly or to outperform DR alternatives. Its ability to directly produce inferences is also an important advantage from a computational perspective. The method is finally illustrated for the estimation of the effect of meeting physical activity recommendations on the risk of hip or upper-leg fractures among older women in the study of osteoporotic fractures. The 95% confidence interval produced by GBCEE is 61% narrower than that of a DR estimator adjusting for all potential confounders in this illustration.\",\"PeriodicalId\":48576,\"journal\":{\"name\":\"Journal of Causal Inference\",\"volume\":\"3 1\",\"pages\":\"335 - 371\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Causal Inference\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1515/jci-2021-0023\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Causal Inference","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/jci-2021-0023","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A generalized double robust Bayesian model averaging approach to causal effect estimation with application to the study of osteoporotic fractures
Abstract Analysts often use data-driven approaches to supplement their knowledge when selecting covariates for effect estimation. Multiple variable selection procedures for causal effect estimation have been devised in recent years, but additional developments are still required to adequately address the needs of analysts. We propose a generalized Bayesian causal effect estimation (GBCEE) algorithm to perform variable selection and produce double robust (DR) estimates of causal effects for binary or continuous exposures and outcomes. GBCEE employs a prior distribution that targets the selection of true confounders and predictors of the outcome for the unbiased estimation of causal effects with reduced standard errors. The Bayesian machinery allows GBCEE to directly produce inferences for its estimate. In simulations, GBCEE was observed to perform similarly or to outperform DR alternatives. Its ability to directly produce inferences is also an important advantage from a computational perspective. The method is finally illustrated for the estimation of the effect of meeting physical activity recommendations on the risk of hip or upper-leg fractures among older women in the study of osteoporotic fractures. The 95% confidence interval produced by GBCEE is 61% narrower than that of a DR estimator adjusting for all potential confounders in this illustration.
期刊介绍:
Journal of Causal Inference (JCI) publishes papers on theoretical and applied causal research across the range of academic disciplines that use quantitative tools to study causality.