{"title":"InGaN/GaN多量子阱太阳能电池的输运模型","authors":"N. Cavassilas, F. Michelini, M. Bescond","doi":"10.1109/PVSC.2014.6925532","DOIUrl":null,"url":null,"abstract":"This theoretical work analyzes photovoltaic effect in InGaN/GaN solar cells. Our electronic transport model considers intrinsic quantum behaviors like confinement, tunneling, electron-phonon scattering and electron-photon interactions. Based on this model we compare performances of Multiple Quantum Wells (MQW) structure with those of thick-layer device. We show that MQW is a promising candidate that provides better current characteristics. This work sheds light on the importance of finding a good balance between photon-absorption efficiency and transport properties. We also show the unintuitive influence of electron-phonon scattering.","PeriodicalId":6649,"journal":{"name":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","volume":"120 1","pages":"2875-2877"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Transport modeling of InGaN/GaN multiple quantum well solar cells\",\"authors\":\"N. Cavassilas, F. Michelini, M. Bescond\",\"doi\":\"10.1109/PVSC.2014.6925532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This theoretical work analyzes photovoltaic effect in InGaN/GaN solar cells. Our electronic transport model considers intrinsic quantum behaviors like confinement, tunneling, electron-phonon scattering and electron-photon interactions. Based on this model we compare performances of Multiple Quantum Wells (MQW) structure with those of thick-layer device. We show that MQW is a promising candidate that provides better current characteristics. This work sheds light on the importance of finding a good balance between photon-absorption efficiency and transport properties. We also show the unintuitive influence of electron-phonon scattering.\",\"PeriodicalId\":6649,\"journal\":{\"name\":\"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)\",\"volume\":\"120 1\",\"pages\":\"2875-2877\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2014.6925532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2014.6925532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transport modeling of InGaN/GaN multiple quantum well solar cells
This theoretical work analyzes photovoltaic effect in InGaN/GaN solar cells. Our electronic transport model considers intrinsic quantum behaviors like confinement, tunneling, electron-phonon scattering and electron-photon interactions. Based on this model we compare performances of Multiple Quantum Wells (MQW) structure with those of thick-layer device. We show that MQW is a promising candidate that provides better current characteristics. This work sheds light on the importance of finding a good balance between photon-absorption efficiency and transport properties. We also show the unintuitive influence of electron-phonon scattering.