{"title":"GtoPdb v.2023.1中鞘氨醇1-磷酸的周转率","authors":"N. Pyne, S. Pyne","doi":"10.2218/gtopdb/f776/2023.1","DOIUrl":null,"url":null,"abstract":"S1P (sphingosine 1-phosphate) is a bioactive lipid which, after release from cells via certain transporters, acts as a ligand for a family of five S1P-specific G protein-coupled receptors (S1P1-5). However, it also has a number of intracellular targets. S1P is formed by the ATP-dependent phosphorylation of sphingosine, catalysed by two isoforms of sphingosine kinase (EC 2.7.1.91). It can be dephosphorylated back to sphingosine by sphingosine 1-phosphate phosphatase (EC 3.1.3) or cleaved into phosphoethanolamine and hexadecenal by sphingosine 1-phosphate lyase (EC 4.1.2.27). Recessive mutations in the S1P lyase (SPL) gene underlie a recently identified sphingolipidosis: SPL Insufficiency Syndrome (SPLIS). In general, S1P promotes cell survival, proliferation, migration, adhesion and inhibition of apoptosis. Intracellular S1P affects epigenetic regulation, endosomal processing, mitochondrial function and cell proliferation/senescence. S1P has myriad physiological functions, including vascular development, lymphocyte trafficking and neurogenesis. However, S1P is also involved in a number of diseases such as cancer, inflammation and fibrosis. Therefore, its GPCRs and enzymes of synthesis and degradation are a major focus for drug discovery.","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"54 12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sphingosine 1-phosphate turnover in GtoPdb v.2023.1\",\"authors\":\"N. Pyne, S. Pyne\",\"doi\":\"10.2218/gtopdb/f776/2023.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"S1P (sphingosine 1-phosphate) is a bioactive lipid which, after release from cells via certain transporters, acts as a ligand for a family of five S1P-specific G protein-coupled receptors (S1P1-5). However, it also has a number of intracellular targets. S1P is formed by the ATP-dependent phosphorylation of sphingosine, catalysed by two isoforms of sphingosine kinase (EC 2.7.1.91). It can be dephosphorylated back to sphingosine by sphingosine 1-phosphate phosphatase (EC 3.1.3) or cleaved into phosphoethanolamine and hexadecenal by sphingosine 1-phosphate lyase (EC 4.1.2.27). Recessive mutations in the S1P lyase (SPL) gene underlie a recently identified sphingolipidosis: SPL Insufficiency Syndrome (SPLIS). In general, S1P promotes cell survival, proliferation, migration, adhesion and inhibition of apoptosis. Intracellular S1P affects epigenetic regulation, endosomal processing, mitochondrial function and cell proliferation/senescence. S1P has myriad physiological functions, including vascular development, lymphocyte trafficking and neurogenesis. However, S1P is also involved in a number of diseases such as cancer, inflammation and fibrosis. Therefore, its GPCRs and enzymes of synthesis and degradation are a major focus for drug discovery.\",\"PeriodicalId\":14617,\"journal\":{\"name\":\"IUPHAR/BPS Guide to Pharmacology CITE\",\"volume\":\"54 12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IUPHAR/BPS Guide to Pharmacology CITE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2218/gtopdb/f776/2023.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUPHAR/BPS Guide to Pharmacology CITE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2218/gtopdb/f776/2023.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sphingosine 1-phosphate turnover in GtoPdb v.2023.1
S1P (sphingosine 1-phosphate) is a bioactive lipid which, after release from cells via certain transporters, acts as a ligand for a family of five S1P-specific G protein-coupled receptors (S1P1-5). However, it also has a number of intracellular targets. S1P is formed by the ATP-dependent phosphorylation of sphingosine, catalysed by two isoforms of sphingosine kinase (EC 2.7.1.91). It can be dephosphorylated back to sphingosine by sphingosine 1-phosphate phosphatase (EC 3.1.3) or cleaved into phosphoethanolamine and hexadecenal by sphingosine 1-phosphate lyase (EC 4.1.2.27). Recessive mutations in the S1P lyase (SPL) gene underlie a recently identified sphingolipidosis: SPL Insufficiency Syndrome (SPLIS). In general, S1P promotes cell survival, proliferation, migration, adhesion and inhibition of apoptosis. Intracellular S1P affects epigenetic regulation, endosomal processing, mitochondrial function and cell proliferation/senescence. S1P has myriad physiological functions, including vascular development, lymphocyte trafficking and neurogenesis. However, S1P is also involved in a number of diseases such as cancer, inflammation and fibrosis. Therefore, its GPCRs and enzymes of synthesis and degradation are a major focus for drug discovery.