{"title":"泛藻团聚物银纳米粒子的合成、表征及其抗菌活性研究","authors":"Layla Abdul-Hamed Said","doi":"10.23851/mjs.v31i3.361","DOIUrl":null,"url":null,"abstract":"Recently, the biosynthesis of nanoparticles from bacteria have attracted attention, this study has been made for biosynthesize and characterizes silver nanoparticles (AgNPs) from local clinical isolate Pantoea agglomerans . The ability of those particles to inhibit the virulence factors biofilm and hemolysin produced by some local clinical multidrug-resistant human pathogenes including Acinetobactor haemolyticus , Escherichia coli , Serratia marcescens and Staphylococcus aureus were investigated by treating all of the test isolates with sub-MIC(16 mg/ml) AgNPs. The AgNPs produced were characterized using Atomic Force Microscopy (AFM). Pantoea agglomerans were found to have the ability to synthesize AgNPs at room temperature within 24hrs and were spherical in shape as depicted by AFM. The AgNPs produced exhibited a potential antibiofilm and hemolysin inhibition activities against tested pathogens.","PeriodicalId":7515,"journal":{"name":"Al-Mustansiriyah Journal of Sciences","volume":"12 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biosynthesis and Characterization of Silver Nanoparticles From Pantoea agglomerans and Some of Their Antibacterial Activities\",\"authors\":\"Layla Abdul-Hamed Said\",\"doi\":\"10.23851/mjs.v31i3.361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the biosynthesis of nanoparticles from bacteria have attracted attention, this study has been made for biosynthesize and characterizes silver nanoparticles (AgNPs) from local clinical isolate Pantoea agglomerans . The ability of those particles to inhibit the virulence factors biofilm and hemolysin produced by some local clinical multidrug-resistant human pathogenes including Acinetobactor haemolyticus , Escherichia coli , Serratia marcescens and Staphylococcus aureus were investigated by treating all of the test isolates with sub-MIC(16 mg/ml) AgNPs. The AgNPs produced were characterized using Atomic Force Microscopy (AFM). Pantoea agglomerans were found to have the ability to synthesize AgNPs at room temperature within 24hrs and were spherical in shape as depicted by AFM. The AgNPs produced exhibited a potential antibiofilm and hemolysin inhibition activities against tested pathogens.\",\"PeriodicalId\":7515,\"journal\":{\"name\":\"Al-Mustansiriyah Journal of Sciences\",\"volume\":\"12 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Al-Mustansiriyah Journal of Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23851/mjs.v31i3.361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Mustansiriyah Journal of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23851/mjs.v31i3.361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biosynthesis and Characterization of Silver Nanoparticles From Pantoea agglomerans and Some of Their Antibacterial Activities
Recently, the biosynthesis of nanoparticles from bacteria have attracted attention, this study has been made for biosynthesize and characterizes silver nanoparticles (AgNPs) from local clinical isolate Pantoea agglomerans . The ability of those particles to inhibit the virulence factors biofilm and hemolysin produced by some local clinical multidrug-resistant human pathogenes including Acinetobactor haemolyticus , Escherichia coli , Serratia marcescens and Staphylococcus aureus were investigated by treating all of the test isolates with sub-MIC(16 mg/ml) AgNPs. The AgNPs produced were characterized using Atomic Force Microscopy (AFM). Pantoea agglomerans were found to have the ability to synthesize AgNPs at room temperature within 24hrs and were spherical in shape as depicted by AFM. The AgNPs produced exhibited a potential antibiofilm and hemolysin inhibition activities against tested pathogens.